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1. INTRODUCTION

Extracting subseasonal-to-seasonal (S2S) 
predictability offered by low-frequency modes of 
variability, such as El Niño Southern Oscillation 
(ENSO), remains a challenge for Southern California 
precipitation. Current indices used to characterize 
ENSO and its teleconnections from the tropical 
Pacific, including the Niño 3.4 Index and ENSO 
Longitude Index, do not yield reliable subseasonal-to-
seasonal predictability of Western United States 
precipitation (Passarella and Mahajan, 2023).  

Passarella and Mahajan (2023) developed a multi-
input multi-output autoencoder (MIMO-AE) that can 
extract the nonlinear co-variability patterns between 
tropical Pacific sea surface temperatures and 
Southern California precipitation anomalies on 
monthly time scales. They found that the index 
generated at the bottleneck layer of the MIMO-AE 
provides enhanced predictability of Southern 
California precipitation at a lead time of up to four 
months at the 95% confidence level, compared to the 
Niño 3.4 index and ELI (Passarella and Mahajan, 
2023). We hypothesize that adding an additional input 
for North Pacific 500 mb geopotential height 
anomalies into the MIMO-AE network may provide 
enhanced predictability by better accounting for 
internal atmospheric variability (Myoung et al. 2018; 
Guirguis et al. 2020).  

This ongoing study extends the work of Passarella    
and Mahajan (2023) to build a MIMO-AE network that 
can extract the nonlinear co-variability patterns 
between three input vectors: tropical Pacific sea 
surface temperature (TP-SST), Southern California 
precipitation (SC-PRECIP), and North Pacific 
geopotential height anomalies at the 500 mb (NP-
Z500) pressure level. We aim to address the following 
questions:  

• How can we use ML to maximize tropical-
extratropical teleconnections as a source of
S2S Southern California precipitation
predictability?

• Can we improve upon the MIMO-AE designed
by Passarella and Mahajan (2023) by adding a
North Pacific Z500 anomaly input and generate
an index better associated with Southern
California precipitation?
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2. DATA

We used 165 years (1850-2014) of monthly gridded
historical simulation data at a spatial resolution of 1.0˚ x
1.0˚ from the Energy Exascale Earth System Model
version 1.0 (E3SMv1) large ensemble (E3SM Project,
2018). The MIMO-AE network was trained on the first
100 years (1850-1949) of the dataset for TP-SST, SC-
PRECIP, and NP-Z500 anomalies and the remaining 65
years of data (1950-2014) was used to evaluate the
predictive skill of the MIMO-AE index. Monthly
anomalies were computed for TP-SST in the domain
(20˚N, to 20˚S, 120˚E to 70˚W), SC-PRECIP in the
domain (32˚N to 35˚N, 120˚W to 114˚W), and NP-Z500
in the domain (30˚N to 65˚N, 160˚E to 140˚W). The TP-
SST and SC-PRECIP domains are consistent with those
used by Passarella and Mahajan (2023). We used the
North Pacific domain (30˚N to 65˚N, 160˚E to 140˚W)
defined by Trenberth and Hurrell (1994) in their
development of the North Pacific Index for measuring
interannual-to-decadal atmospheric circulation variability. 
Monthly anomalies for each input variable were linearly 
detrended using least squares regression and scaled 
using a minimum-maximum scaler before training was 
performed.

3. METHODOLOGY

3.1 MIMO-AE 

We use the MIMO-AE network to generate an index 
from which we can derive associated SC-PRECIP 
patterns. We chose a similar MIMO-AE architecture to 
the network designed by Passarella and Mahajan 
(2023), since this design was found to yield low 
reconstruction error and could explain at least 80% of 
Southern California precipitation variability for most 
domain grid points (Fig. 1b). Figure 2 illustrates our 
preliminary MIMO-AE network consisting of the three 
input (and output) vectors. The first dense hidden layer 
of the encoder contains 50 nodes and the second 
contains 10 nodes for each of the three separate inputs 
(Fig. 2). To add nonlinearity to the MIMO-AE 
reconstructions, we used the hyperbolic tangent 
activation (tanh) function for all hidden layers.  

At the single-node bottleneck layer, we force the 
MIMO-AE network to learn the nonlinear relationships 
between the input variables and generate the MIMO-AE 
index. The MIMO-AE index is a one-dimensional vector 
over time, where each index value at a timestep t yields 
a different spatial pattern of the reconstructed inputs 
(Passarella and Mahajan, 2023). From the bottleneck 
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layer, we then pass the latent representation of the input 
data through the decoder of MIMO-AE to obtain 
reconstructions of the three original input fields. The 
decoder is symmetric in design to that of the encoder 
(Fig. 2).  

Figure 1. A simple autoencoder architecture (a), MIMO-AE 

architecture for two inputs and their reconstructions: tropical Pacific 
SST anomalies and Southern California precipitation anomalies (b). 
Figure reproduced from Passarella and Mahajan (2023).  

Figure 2. Three input-output MIMO-AE architecture consisting of 

tropical Pacific SST, Southern California precipitation, and additional 
North Pacific Z500 anomaly input-output.  

The MIMO-AE was trained for 100 epochs with an 
Adam loss optimizer using TensorFlow. The training 
loss is calculated using a mean squared error 
between the MIMO-AE reconstructed data and 
original input data following a similar approach as 
Passarella and Mahajan (2023).  

3.2. ASSESSING PREDICTABILITY PROVIDED BY 
THE MIMO-AE  

We use LSTMs to further assess the relationship 
between the MIMO-AE index and SC-PRECIP 
patterns. LSTMs serve as our time series forecasting 
models to generate predicted values of the MIMO-AE 
index, regionally averaged SC-PRECIP, and other 
indices (e.g., Niño 3.4 and ELI) for the last 65 years of 
E3SM testing data (1950-2014). We chose the same 
LSTM architecture as Passarella and Mahajan (2023) 
consisting of 100 hidden nodes, since this design was 

found to yield low training loss for all indices. We first 
assess the predictability of the MIMO-AE index itself. 
We build separate LSTM models for each of the time 
series of the indices (MIMO-AE index, Niño 3.4 index, 
and domain averaged SC-PRECIP) using the first 100 
years (1850-1949) of E3SM data and trained the 
LSTMs for each of the forecast lead times from 0 to 
12 months. The predictive skill of the LSTMs is 
subsequently tested on the last 65 years of E3SM 
data. We then compute the correlation between the 
LSTM predicted values of each index and the true 
value of each index.  

Next, we pass LSTM-predicted MIMO-AE index 
values through the decoder of MIMO-AE to obtain 
SC-PRECIP spatio-temporal anomaly patterns. The  
SC-PRECIP anomaly patterns are domain averaged 
to obtain a time series and the correlation is 
computed between the predicted and true value of 
domain averaged SC-PRECIP. Both the MIMO-AE 
network and LSTM models were constructed in 
Python using Keras and TensorFlow Neural 
Network/Deep Learning libraries.  

4. PRELIMINARY RESULTS

Figure 3. Training Losses for MIMO-AE over 100 epochs using 

scaled data for tropical Pacific SST (a); Southern California 
precipitation (b); and North Pacific Z500 anomalies (c).

In our preliminary investigation, we find that the 
MIMO-AE network constructed from the three input-
output vectors yields low values of the mean squared 
error training loss function for each of the scale input 
data variables. The model converges to a loss of 
approximately 0.08 (Fig. 3a) for TP-SSTs, about 0.01 
for SC-PRECIP (Fig. 3b), and about 0.068 for NP-
Z500 (Fig. 3c).  

We computed the R2 values between the 
reconstructions from the MIMO-AE and original input 
data for the 100 years of training for SC-PRECIP (Fig. 
4a), TP-SSTs (Fig. 4b), and NP-Z500 anomalies (Fig. 
4c). The MIMO-AE explains about 60% of the 
variability of Southern California precipitation, about 
4-12% of variability of Tropical Pacific SSTs, and
approximately 4-8% of variability of North Pacific
Z500 anomalies over most of the grid points in the
respective spatial domains of each input variable.
Our MIMO-AE explains smaller fractions of variability
of SC-PRECIP and TP-SSTs compared to the two
input-output MIMO-AE developed by Passarella and
Mahajan (2023), which was found to explain over
80% of the variability of SC-PRECIP and up to 20% of
the variability of TP-SSTs. In the future, we intend to
further explore different network designs that can
explain larger fractions of SC-PRECIP variability.



Figure 4. R2 values between MIMO-AE reconstructed and original input data for SC-PRECIP (a); TP-SST (b); and NP-Z500 anomalies (c). 

Figure 5. Three-month moving average of the standardized time series of MIMO-AE index (blue), Niño 3.4 index (orange), and domain 

average SC-PRECIP (green) for a segment (last 40 years: 1974-2013) of the 65 years of E3SM historical simulation testing data. 

Figure 6. Correlation skill between LSTM-predicted values and true values of MIMO-AE index (blue), Niño 3.4 index (orange), and domain 

averaged SC-PRECIP at forecast lead times of 0 to 12 months for E3SM testing data.

Figure 5 shows the three-month moving average of 
the standardized time series of the MIMO-AE index, 
and Niño 3.4 index, and regionally averaged SC-
PRECIP for a segment (last 40 years: 1974-2013) of 
the 65 years of E3SM testing data. The Pearson’s 
correlation coefficients of each time series against 
domain-averaged SC-PRECIP were also computed 
for the smoothed data (Fig. 5). The correlation 
between SC-PRECIP and the MIMO-AE index (0.55) 
is higher than between SC-PRECIP and the Niño 3.4 
index (0.23), given that we used SC-PRECIP data to 
generate the MIMO-AE index and our MIMO-AE can 
explain up to 60% of SC-PRECIP variability. 

The predictability of the MIMO-AE index itself, 
along with the predictability of the Niño 3.4 index and 
domain-averaged SC-PRECIP, at lead times of 0 to 
12 months are shown in Figure 6. The MIMO-AE 
index shows stronger correlation skill than domain-
averaged SC-PRECIP for lead times between 1 
month to 6 months (Fig. 6). The MIMO-AE index 
exhibits weaker correlation skill than the Niño 3.4 
index at all lead times longer than 1 month. This is 
similar to the results from Passarella and Mahajan 
(2023), which also found that the MIMO-AE index 
showed lower correlation skill than the Niño 3.4 index 
at all lead times exceeding 1 month. Passarella and 
Mahajan (2023) suggest that noisy precipitation may 
be a possible factor in lowering the correlation 
between the LSTM-predicted values of MIMO-AE 
index with the true values of the MIMO-AE index.  

5. SUMMARY

Preliminary results show that the MIMO-AE index 
generated from three input fields (TP-SST, SC-
PRECIP, and NP-Z500 anomalies) exhibits weak 
correlation skill between LSTM-predicted values of 
the index for lead times longer than 1 month. Our 
MIMO-AE network explains the largest fractions of 
variability for the SC-PRECIP input compared to the 
TP-SST and NP-Z500 inputs. However, the three-
input-output MIMO-AE overall explains a lower 
fraction of SC-PRECIP variability compared to the two 
input-output MIMO-AE by Passarella and Mahajan 
(2023).  

6. FUTURE WORK

Ongoing work aims to evaluate the correlation skill of 
domain-averaged SC-PRECIP patterns constructed 
from LSTM-predicted values of the MIMO-AE index 
and true domain-averaged SC-PRECIP. We also 
intend to further explore hyperparameter tuning to 
obtain the optimal network design for the MIMO-AE 
network which yields low training loss, while 
explaining larger fractions of Southern California 
precipitation variability. This may involve using the 
KerasTuner framework to find the optimal set of 
hyperparameters while training the MIMO-AE as well 
as experimenting with varying number of nodes, 
hidden layers, and testing other activation functions.  



Additionally, we aim to use transfer learning to train 
the MIMO-AE on a combination of simulation and 
observational data, as this approach was shown by 
Passarella and Mahajan (2023) to provide enhanced 
predictability of Southern California precipitation on 
the S2S scale compared to training the MIMO-AE 
solely on simulation data. 
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