In this presentation, we present new methods for assimilating all-sky radiance observations in EnVar using the novel Rapid Refresh Forecasting System (RRFS) that utilizes the Finite-Volume Cubed-Sphere (FV3) model. We first further developed the EnVar solver by directly including brightness temperature (Tb) as a state variable. This modification improves the balance of the cost function gradient and speeds up minimization. Including Tb as a state variable also improves the model fit to observations and increases forecast skill compared to utilizing a standard state vector configuration. We also evaluate the impact of assimilating ABI all-sky radiances in RRFS for a severe convective event in the central Great Plains. Assimilating these radiance observations results in better spin-up of a tornadic supercell and enhanced suppression of spurious convection. These benefits are shown to continue into the forecast period, especially for localized convective events.

