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ABSTRACT

Plant moisture content plays an important role in determining the availability of natural fuels for
wildfires in Mediterranean ecosystems. While dead fuel moisture variation mainly depends exclu-
sively on the weather conditions, live fuel moisture content is relatively more difficult to predict due
to its seasonality in response to the physiological and phenological processes of plants such as spring
flushing and fall curing as well as soil water availability. Efforts have been made using some kind
of indices that employ routinely measured meteorological parameters to model live plant moisture
content, such as the Keetch-Byram drought index (Keetch and Byram 1968), the cumulative water
balance index (Dennison et al. 2003), field-sampled soil moisture (Qi et al. 2012), among others.
Our study aims to develop a simple, yet skillful model to predict live fuel moisture content of
Adenostoma fasciculatum (chamise or greasewood) as measured at ten southern California sites.
Data collected at these locations is used to help determine the kind of fire behavior (i.e. spread
rate, intensity, etc.) that could be associated with wildfires across southern California. The key
variable is soil moisture from the 40-100 cm layer derived from the North American Land Data
Assimilation System (NLDAS) reanalysis. Our model consists of a time function to represent
the average annual cycle and soil moisture differences from its own annual variation to capture
LFM departures from normal. With this approach, correlation coefficients for the most accurately
modeled sites exceed 0.8, if a time lag of 29 days is incorporated. As we are employing a gridded
reanalysis, our strategy facilitates the reconstruction of past events as well as data gap filling. The
improved live fuel moisture model can work with other components of fuel moisture to help monitor
vegetation conditions in southern California regions for fire danger assessment.

1. Introduction

Live fuel moisture (LFM) is a measure of the moisture
content of vegetation, which is important owing to its
recognized role in the fire hazard (Pyne et al. 1996;
Schoenberg et al. 2003). Large fires often occur during
periods of low LFM (Dennison and Moritz 2009), with
size increasing as LFM decreases (Davis and Michaelsen
1995). LFM is the ratio of the water weight in a particular
sample to its dry weight, expressed as a percentage (Pollet
and Brown 2007). Owing to its formulation, the LFM can
exceed 100%, and often does during wet conditions.

While a variety of vegetation species are routinely
sampled, the primary emphasis in southern California
is on chamise or greasewood (Adenostoma fasciculatum),
a common shrub that grows in the chaparral and is
particularly flammable due to its fine, needle-like leaves
and other characteristics (Countryman and Philpot 1970).
Fuel moisture samples are usually taken twice a month by

various fire agencies across southern California, using the
technique described in Countryman and Dean (1979); see
also Zahn and Henson (2011). Unfortunately, the sampling
sites are sparse and the sampling times are not coordinated
between fire agencies. In addition, the equipment used
to dry the samples is not standardized which can lead to
inconsistencies in the data. The fact that the age of the
sampled material may vary from site to site is another
complicating factor, as when moisture is abundant, new
growth can contain much more water than older parts of
the plant. It is understood that limited sample size implies
a sizable amount of uncertainty in LFM measurements
(Weise et al. 1998).

Over the years, there have been a number of attempts
to model LFM for various species, especially employing
easily obtained or computed meteorological information
(e.g., Viegas et al. 2001; López et al. 2002; Castro et al.
2003), although it is recognized that such information alone

1



cannot fully describe the moisture content of live vegetation
(Fiorucci et al. 2007). Dennison et al. (2003) evaluated the
skill of models based on the Keetch-Byram Drought Index
(KBDI; Keetch and Byram 1968) and the Cumulative
Water Balance Index (CWBI; Dennison et al. 2003), as
well as remotely sensed data, in reproducing LFM values
sampled at sites in the Santa Monica mountains. A skillful
relationship between CWBI and LFM for several species,
including chamise, was demonstrated. Qi et al. (2012)
used soil moisture sampled in the field along with remotely
sensed data to model LFM values measured from species
of oak and sagebrush. Although mean absolute errors were
still sizable (±20% of LFM), soil moisture measured in situ
emerged as the most useful LFM proxy.

The recognized dependence of chamise LFM on soil
moisture availability (Dennison et al. 2003) suggests that
soil moisture could serve as a reasonable proxy for this
species as well. However, sampling LFM is already labor-
intensive and expanding the program to measure soil
conditions at the same sites [as was done by Sternberg et al.
(1996) and Qi et al. (2012), for example] would add to that
burden. Regarding chamise, Dennison and Moritz (2009)
demonstrated the utility of using rainfall that, after all, is
the source of soil moisture. We elected to pursue a different
strategy, and test whether a readily available, gridded soil
moisture product could be used to reproduce historical LFM
values. If completely successful, the resulting product
would be of significant use in operational fire behavior
forecasting, as the proxy could be applied to the enormous
areas for which LFM sampling is unavailable. It would also
be available to fill in temporal gaps in the observational
record, as well as extend the historical record backward in
time.

2. Data sources

Historical live fuel moisture data was obtained from
the National Fuel Moisture Database (NFMD) website1,
supplemented by other sources. For this study, we are
focusing on LFM sampling sites located in the mountains
located north and west of the city of Los Angeles,
encompassing parts of Los Angeles, Ventura and Santa
Barbara counties, at which chamise samples have been
taken. Most of the sites are located on south-facing
mountain slopes (Fig. 1a), at elevations ranging from about
400 to 1200 m above mean sea level (Table 1). Only
sites established prior to January 2006, indicated by the
filled black circles, were considered (see Table 1 for site
information), as these have sufficient observations available
to characterize the annual LFM cycle, an important part
of our analysis strategy. (Other stations exist, and those
established between 2006 and 2009 are marked by the
unfilled black circles.)

1http://www.wfas.net/nfmd/public/states map.php?state=CA

In the subset of sites where both new and old growth
chamise is reported, consisting of San Marcos, Reyes Creek
and Rose Valley (SAN, REY and ROS on Fig. 1a), the new
growth data are used. The starting date for the analyses
varies among the stations (Table 1), for most being the
first available observation after 1 January 2001. Owing to
the smaller number of samples available, all data on hand
for SAN, REY, and ROS were utilized. Each analysis ends
with the last LFM sample prior to 30 June 2013, with the
year following that period (to 15 April 2015) reserved for
out-of-sample testing.

The North American Land Data Assimilation System
(Mitchell et al. 2004; Xia et al. 2012a,b), Phase 2 (hereafter
“NLDAS”) reanalysis product was selected as the soil
moisture data source. The NLDAS project combines
available observations and model output to provide surface
and subsurface information over the conterminous United
States at 1/8th degree spatial resolution. The NLDAS
model employs several land surface models (LSMs),
including the Noah model that is used in the operational
weather forecasting models from the National Centers for
Environmental Prediction (NCEP) and is also a popular
choice of Weather Research and Forecasting (WRF;
Skamarock et al. 2008) model users. While other available
versions of the NLDAS dataset have been considered for
this work, we will confine our present analyses to the Noah
product.

A few stations have been intentionally excluded from
this analysis. The Bouquet Canyon (BOU on Fig. 1a)
record has several long gaps, including after the site was
burned in the October 2007 wildfires. Upper Oso (OSO)
is one of the more infrequently sampled locations, and has
several long stretches of missing data. This site is located
very near San Marcos (SAN) although on the other side
of the narrow coastal range; the relatively coarse NLDAS
grid cannot differentiate between the two anyway. Templin
Highway (not shown on Fig. 1a) was established in 1990,
and samples are being taken there at present, but data are
missing for the years 1997 through 2012.

Subsequent to December 2011, a change in NLDAS
data sources and interpolation strategy (Youlong Xia,
personal communication) caused contamination of soil
moisture information near the coastline. This affects
three stations, Clark Motorway (CLA), Trippet Ranch
(TRP) and Schueren Road (SCH), all in the Santa Monica
mountains near Malibu and whose LFM samples tend to
be highly correlated. For SCH, which was retained in this
analysis, soil moisture from an unimpacted location one
grid cell to the north is used instead; this has a small
negative impact on model skill. This effectively shifts the
station well inland, on the north side of the tall but narrow
Santa Monica mountains, which the NLDAS can barely
detect (Fig. 1a).

Chamise has a dual root system, “a broad, near-
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surface system to take advantage of light winter storms
and a deep root system to tap deeper sources of water
during summer drought” (Henson et al. 1996) that can
reach depths as large as 8 m (Lambers et al. 2008).
Chamise’s roots can penetrate down to weathered bedrock
and exploit tiny cracks in unweathered bedrock, where
deep water reservoirs are available, especially during the
annual summer drought (Hellmers et al. 1955; Sternberg
et al. 1996). The soil-bedrock boundary was found to be
at a depth of 20-40 cm at an experimental site (1150 m
elevation) in the foothills of the San Jacinto Mountains in
southern California (Sternberg et al. 1996). The Noah LSM
uses four soil layers, representing 0-10, 10-40, 40-100, and
100-200 cm below ground level, and it is not precisely clear
which of these best represents the shrub’s root zone. We
tested several layers and layer combinations before settling
on the 40-100 cm layer soil moisture (hereafter referred to
as “SM”) for this analysis.

Both LFM and SM data can be noisy, subject to
sharp, but often short-lived spikes following precipitation
events. In the case of LFM, the noisiness is exacerbated
by the relatively infrequent sampling. Our emphasis is on
capturing the somewhat longer temporal variations of fuel
moisture that might better characterize the seasonal fire
hazard, rather than short-lived undulations in the LFM
record. Thus, we view short-term variations in both series
as distractions.

In this regard, the Noah 40-100 cm layer has some
practical advantages. Unlike the shallower layers near
the surface, the moisture in this soil layer is less subject
to the high frequency pulses that immediately follow
precipitation events. The temporal variation at this level
is still sizable, but the time needed for moisture to pass
through the top two layers acts as a natural filter. In
contrast, the depth and thickness of the lowest level, 100-
200 cm, renders variation in that layer to be small. This
is illustrated for a single site, Laurel Canyon (LAU on Fig.
1a), in Fig. 2a. Note only the more sizable and prolonged
rainfall events propagate down to the lower two soil levels.
Remaining short-period variations in the 40-100 cm record
are removed with smoothing, via application of a ± 30 day
unweighted filter (see red curve on Fig. 2a).

Our immediate goal is to create the simplest possible
model that skillfully captures the temporal variation
of LFM. Given the dual-root structure of chamise, a
combination of both shallower and deeper soil moisture
might represent an improvement over the approach
outlined below. However, an inadvertent characteristic
of the centered temporal filter is that it spreads a
signal forward and backward in time. With a layered,
gravity-driven soil moisture model, that is tantamount to
expanding the depth of the root zone somewhat.

3. Analysis strategy

The goal of this study is to forge simple yet skillful
models for predicting LFM using the gridded NLDAS
soil moisture product. We will soon see that, at first
glance, LFM and SM are not particularly well related,
as each has its own, somewhat different, annual cycle.
It is hypothesized, however, that LFM departures from
its annual cycle may be predictable with soil moisture
deviations from its own seasonal variation. Therefore, for
each sampling site considered, annual cycle models will
be constructed for both LFM and SM, and residuals from
these models will be used in the prediction model.

a. LFM annual cycle

In general, LFM is influenced by a variety of factors,
including moisture availability, evapotranspiration, and
plant physiology (Qi et al. 2012). In the study area, nearly
all of a typical year’s precipitation falls in the non-summer
months, so LFM values typically reach their lowest values
in the fall, before the seasonal rains have commenced as
is typical for a Mediterranean climate (McCutchan 1977;
Moreno and Oechel 1994). For chamise, another control
has to be air temperature, which to a certain extent,
determines whether the shrub is active or dormant2. Due
to dormancy, the vegetation at higher, cooler elevations
may not take up moisture from the soil, even long after
the winter rains have begun. The consequence of this is
that the LFM of chamise has a pronounced annual cycle
reflecting not only the temporal variation of rainfall, but
also the influence of elevation.

This dependence can be seen in Fig. 2b, which shows
the temporal variation of LFM for three stations over
a five-year period. The vegetation at the intermediate
elevation station, San Marcos (816 m), is the wettest of
the group, likely reflecting its coastal location above Santa
Barbara (Fig. 1a). Although this station’s peak values vary
substantially through the period, they tend to occur in the
spring season, between March and May. In contrast, the
lower (Laurel Canyon, 398 m) and higher (Reyes Creek,
1233 m) sites evinced earlier and later peaks, respectively,
in three of the five years depicted.

The annual model for LFM will consist of a “time
function” (TF) with an intercept and four additional
terms, two sine and two cosine functions representing
periods of 12 and 6 months (365.25 and 182.625 days),
a combination is capable of identifying fairly oddly shaped
annual cycles3. Two alternate strategies were pursued,

2The time of year when chamise begins to emerge from dormancy
is dependent on temperature; however, after the reproduction cycle
is over, the plant will begin to enter dormancy regardless of
temperature.

3While statistically significant for most stations, the 6-month sine
and cosine terms contribute only trivially to the time function, and
could be excluded with relatively little loss of skill. However, this
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with the regression applied to the original, irregularly
spaced LFM dataset, and one that was interpolated to
daily frequency using cubic splines. The latter approach
is functionally a periodogram spectral analysis on equally-
spaced data with the coefficients determined by linear
regression. As anticipated, the two approaches yield nearly
identical results for sufficiently long series without serious
data gaps, and this is one reason why we restricted our
analysis to more established and continually-sampled sites.
It is important to note that a log transform is always
applied to LFM data, as this helps to compress this positive
definite and open-ended series, but LFM observations,
reconstructions and residuals will be shown only after
transformation back to the original units.

Figure 3a presents the LFM annual models for the
ten stations selected for analysis, based on a day-of-year
(DOY) measure that for convenience starts on September
1st. This convention coincides with the climatological onset
of the “Santa Ana” winds (Raphael 2003; Jones et al. 2010),
the offshore flow that greatly increases the fire danger in
southern California. It is clear that the annual cycles vary
among the sites with respect to amplitude and phase. As
was suggested by Fig. 2b, lower elevation stations tended
to reach peak LFM earliest in the season. Laurel Canyon’s
peak is on DOY 214 (April 2nd for a non-leap year). Reyes
Creek, the highest elevation site sampled, has a long, slow
increase through the wet season, peaking at DOY 261
(May 19th). The anticipated dependence on peak DOY
with elevation is imperfect but strong (Fig. 4). These
LFM annual models account for between 45 to 74% of the
original live fuel moisture variance (see R2 values in Table
2). The best fit was for Schueren Road, which is very close
to the coast, and the poorest was for the highest elevation
station, Reyes Creek, which is also located far inland (Fig.
1a).

b. Soil moisture annual cycle

The long-term average and standard deviation of the
40-100 cm layer soil moisture in the NLDAS Noah-based
reanalysis is shown in Fig. 1b. The temporal variation
is small in the urbanized area, including nearby LFM
sites Laurel Canyon, La Tuna Canyon (LAT on Fig.
1a) and Placerita Canyon (PLA). Glendora Ridge (GLE)
and Peach Motorway (PEA) are located near pronounced
local maxima and minima of soil moisture, respectively.
The relatively coarse resolution of the NLDAS dataset
is obvious, especially along the coastline. It is also
apparent in a comparison of actual and interpolated station
elevations (Table 2).

The time function approach was also applied to SM
data, which NLDAS can provide on a daily basis. As

shorter period function helps refine the shape of the annual cycle the
most at locations like Reyes Creek. We want to use equations with
the same functional form at all stations.

with LFM, SM annual cycles were constructed using log-
transformed values to suppress the natural increase of
variability with magnitude. SM has a rather different
annual cycle than LFM (Fig. 3b), generally being smoother
in time and peaking earlier in the wet season. The soil
moisture TFs capture between 46 and 71% of the original
temporal variability (Table 2), comparable to the LFM
annual models, and is highest at Rose Valley and lowest
at Peach and Bitter Canyon (BIT on Fig. 1a).

With respect to phase and amplitude, the ten locations
separate into two very distinct clusters, determined in
part by soil characteristics such as texture (Fig. 1c),
hydraulic conductivity, and field capacity. The three sites
at the urban margin, Laurel Canyon, La Tuna Canyon
and Placerita Canyon, share a relatively small amplitude
variation with an early peak at DOY 172 (February 19th)
(Fig. 3b). The remaining stations reach peak soil moisture
within a few days of DOY 194 (March 13th). Most of the
stations share the same annual mean, with San Marcos,
Peach Motorway and Bitter Canyon emerging as different.

4. The modeling strategy, applied to Laurel
Canyon

Our strategy is to predict the temporal changes of LFM
using a time function in combination with SM. Specifically,
we are concerned with SM’s skill in capturing departures
from a site’s annual LFM cycle. After all, if a site deviates
little from its established annual cycle, then climatology
provides the best forecast. As already shown in Fig.
3a, climatology varies from station to station based on
location, including elevation and, therefore, each station
has a unique TF. It is emphasized that while interpolated
LFM data are needed for model refinement, as shown
below, the final LFM prediction models for each site were
built using available LFM observations alone.

This strategy is applied to the Laurel Canyon site in
Fig. 5. Observed LFM (black dots) is compared to the
time function (red curve) for the period extending roughly
from February 2001 through June 2013 (Fig. 5a). The
TF captures a sizable 57% of the observed series’ variance,
which is the average for the 10 stations examined (Table
2). Removal of the clearly anomalous year of 2007 would
increase the R2 to 0.7, but without altering the annual
cycle shape, or the findings that follow, very much. As
a consequence, this year is retained for this and other
locations.

The residuals from this fit (Fig. 5b) reveal a number
of discrepancies of variable length and magnitude, some of
which are important but may be difficult to discern prior
to removal of the annual cycle. During the spring of 2002
(episode #1 on the figure), observed LFM values declined
more rapidly than predicted by the time function, resulting
in a several-month period of overprediction. The following
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year, LFM both increased more quickly during fall and
waned more slowly in the spring (episode #2), creating
an extended period with positive residuals. Episodes
#3 and #5 involved temporally narrow spikes in LFM
that occurred during otherwise more “normal” years, and
episode #4 involved an early increase followed by a more
typical decline towards low warm-season readings.

LFM values at this station remained very low during
the profound drought of 2007 (episode #6). During this
period, LFM values remained well below Dennison and
Moritz (2009)’s critical threshold value of roughly 79%,
under which fire sizes could be significantly larger. The
years 2008-11 were characterized by slightly wetter than
normal fuel moistures, culminating in a more rapid than
usual increase in early 2011 (episode #7). The LFM rise
was delayed in the winter of 2011, and the decline occurred
earlier in the following year, representing the combined
period marked episode #8.

The annual cycle for SM also captures 57% of its
total variance (Fig. 5c), again roughly average for our
ten stations (Table 2). Residuals from this fit (Fig.
5d) bear significant resemblance to the LFM annual
model’s departures, and direct comparison is facilitated
by superimposing the two error series (Figs. 6a, d). This
comparison illustrates the partial correlation between the
LFM and SM series, adjusted for the time function,
which can be written as r(LFM, SM | TF). The partial
correlation may be computed by separately regressing LFM
and SM on the time function and then correlating the
resulting residuals (rL and rS), as done here. The resulting
squared correlation is 0.55 (r = 0.74), which represents
an appreciable contribution of skill to the LFM prediction
model beyond what the TF itself could provide.

While the congruence between the error series is
substantial, it is also readily apparent there is a systematic
phase difference between them. Figs. 6b and e present
the same data, after shifting the SM residuals later by
29 days4. This is tantamount to relating LFM today to
SM anomalies from about a month prior, so that SM is a
leading indicator of LFM or, equivalently, LFM lags SM.
This makes the time interval between precipitation and
the LFM response even longer, as it takes time for water
received at the surface to percolate downward to the 40-
100 cm layer (Fig. 2a). This result further suggests that
chamise LFM is responding most directly and powerfully
to SM changes farther below the surface, where the shrub’s
deeper taproots might be expected to reside.

After shifting the SM residual series, there is now
a closer correspondence between these TF departures in
terms of timing, and the squared partial correlation has
increased to 0.66 (r = 0.81). The faster-than-expected
decline of fuel moisture during the spring of 2002 (marked

4The reason why 29 days lag is selected will be explained in Section
6.

episode #1) corresponded with a more rapid than usual
drop in SM, which had reached its own peak about 29 days
earlier. LFM episodes #2-5 have significant, if imperfect,
correspondences to SM variations, and episode #6 is
dramatic in both series. (Naturally, the formal relationship
between these series – the slope – will be determined by
regression.) Even the small, higher frequency spikes during
episodes #7 and 8 appear in the SM residuals.

The prediction model for Laurel Canyon LFM is given
by

log (LFM) = intercept + TF + log (SM)

= α + β1 cos (2πD/L) + β2 sin (2πD/L)

+ β3 cos (4πD/L) + β4 sin (4πD/L) +

β5 log (SM) + ε,

(1)

where α is the intercept, βi are the slope coefficients,
SM29 is soil moisture lagged by 29 days, D is September-
based DOY, L is the length of year in days, and ε is the
error. Predictions from this model, after removal of the
log transform, are shown along with observations in Fig.
7, with the climatological TF also displayed for reference.
Overall, the prediction model is quite skillful relative to
climatology (R2=0.85 vs. 0.57). The rapid decline of LFM
during episode #1 is very well captured, as are episode #4’s
early increase, #2’s delayed decline, and, especially, the
dramatic drought of 2007 (episode #6). The sharp LFM
peak during episode #3 is significantly underpredicted
but the autumnal increase and springtime decline are well
captured. The model does better with period #5’s sharp
peak, and the episodes marked #7 and 8 are also rather
well handled.

Scatterplots of predicted vs. observed values can
exaggerate the lack of fit (due to missing dimensions,
such as frequency and time) but are useful for checking
for heteroscedasticity. Results of the White (1980) test
indicated heteroscedasticity is not a concern, which is
due to the use of log transformations. The suggestion of
nonconstant variance in Fig. 8 only appears after the log
transformation is removed (not shown).

5. Other sites

Figure 9 presents prediction models for the ten stations
in the study area. For each location, the model was trained
using observations prior to 30 June 2013 (see Table 1), and
also applied to the final, approximately two-year period
(ending 15 April 2015) that was reserved for out-of-sample
testing. While the figure and Table 2 reveal that our
present SM and TF-based strategy worked best for Laurel
Canyon, other stations with model R2 ≥ 0.80 include La
Tuna Canyon, Schueren Road and San Marcos (Figs. 9c,
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g and h). Model performance during the out-of-sample
period generally appears acceptable.

The goal of our LFM modeling is to gain skill on
climatology, as represented by the LFM annual model.
The average skill gain (see Table 2 and Fig. 10) by the
full prediction model over the annual (TF) model was
about 18%, and ranged from 28% (at Laurel Canyon)
to 11% (at Schueren Road and Peach Motorway). The
small skill gain at Schueren Road (Fig. 9g) reflects the fact
that the LFM TF had already claimed a large 74% of the
total variance, the largest percentage among all stations
examined. LFM tends to vary little from year to year at
this coastal location, even during drought years, relative to
sites farther inland. The situation at Peach Motorway will
be considered presently.

The poorest fit was found for one of the most inland
locations, Reyes Creek (Fig. 9j). Lack of fit can result
from a variety of reasons, including but not limited to
improperly resolved topography, limitations associated
with the precipitation estimation, inadequacies in the soil
model, and local site characteristics, including drainage.
In the case of Reyes Creek, the quality of the LFM annual
model may be impacted by the less frequent sampling at
that location. Overall, however, we believe the skillfulness
of the fit at most stations is high enough to provide useful
information for operations, particularly for the timing of
LFM increases and decreases through the Dennison-Moritz
critical fire weather threshold.

There is a strong similarity among these time series,
because they all share a fundamentally similar annual
cycle. However, it is worth examining more closely how
LFM and the prediction models behaved during the 2007
drought. Figure 11 focuses in on this period, highlighting
stations Laurel Canyon, Placerita Canyon and San Marcos.
As previously seen, LFM at Laurel Canyon hardly changed
at all during this period (Fig. 11a), resulting in very
large anomalies relative to climatology. Plant moisture
had fallen below the Dennison-Moritz threshold by August
2006, and never exceeded it again until after January 2008.
This anomalous behavior is reproduced by the prediction
model, and a similar phenomenon is also seen at Bitter
Canyon and Reyes Creek (Figs. 9f, j).

At other locations, the 2007 drought was not quite as
dramatic. At Placerita Canyon (Fig. 11b), for instance,
LFM values rose above 80% for a short time during May
2007 before quickly falling again. As occurs at other sites,
the Placerita prediction equation handles some periods
of declining LFM better than others, so some additional
model refinement is clearly possible. At coastal sites San
Marcos (Fig. 11c) and Schueren Road (Fig. 9g) the year of
2007 did not appear particularly unusual at all as their
soil moistures were able to recover during the nominal
wet season, consistent with their relatively higher fuel
moisture readings. Taken together, these results indicate

that spatial variations in LFM during the drought were
associated with subtle differences in local soil moisture
conditions that were faithfully captured in the NLDAS
reanalysis and, therefore, the SM-based LFM prediction
models.

The prediction models clearly have difficulty in
capturing the largest values of LFM that can occur during
the wet season, especially when LFM exceeds 100% or
so. This is particularly true at stations Placerita Canyon
and Glendora Ridge (Figs. 9b, i), for which the models
consistently underpredict peak LFM values5. It is possible
that a model based only on SM and climatology cannot
realistically predict very large LFM values anyway, as they
may represent situations in which the plant condition is not
intrinsically limited by the available soil moisture. This
is part of the increase of variation with LFM magnitude
that the log transformations were employed to suppress.
However, in practice, this is not an issue for us because
the fire danger is lower when LFM values are large. We
would sacrifice accuracy in predicting large peak values for
model skill in capturing the temporal shifts between more
and less dangerous plant moisture values.

6. Lag and location issues

For simplicity, all of the fits shown in Fig. 9 and Table 2
employed a 29-day lag with SM. This time interval proved
optimal for Laurel Canyon, as seen in Fig. 12a, which
presents the partial correlation between the residual series
rL and rS . This plot was constructed from daily SM data
along with cubic spline-interpolated LFM information.
Especially owing to the smoothing applied to the SM
data, the variation with lag is not very large, making the
results somewhat less sensitive to the precise time interval
employed.

The optimal lag, however, is found to vary among
the sites, ranging from 0 days at Peach Motorway to 38
days at Glendora Ridge (Table 2). Figure 12b suggests
there are three distinct behaviors relative to Laurel Canyon
exhibited: Placerita Canyon, Glendora Ridge and La Tuna
Canyon, located in the eastern part of the study area,
tend to have longer lags between SM and LFM, and the
correlation drops off quickly for negative lags (LFM leading
SM); San Marcos and Rose Valley in the western part of
the study area tend to have somewhat shorter lags; and
Schueren Road and Bitter Canyon, located in between,
had very short lags with a slow drop-off of correlation
for negative values. The LFM-SM time lag also tended
to increase with elevation, clearly separating into two
distinct groupings (Fig. 13), separating out stations Laurel,
Placerita, and La Tuna Canyons already seen as different
with respect to soil moisture in Fig. 3b. (The reason

5The impact of this on the regressions is mitigated by the log
transformations.
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why Glendora Ridge also falls into the group is presently
unknown.) Unfortunately, this complicates the effort to
create a single prediction model applicable to all sites,
which would be useful for operational reasons.

Note for positive lags (SM leading LFM), no station
has a partial correlation higher than Laurel Canyon. As
a consequence, perhaps this site should not determine the
common network lag. That being said, we could certainly
employ a different lag for each site, but in most cases the
skill improvement is minor (as suggested by a comparison
between maximum and lag 29 partial correlations in Table
2), with the possible exception of two locations: Peach
Motorway and Bitter Canyon.

The extremely very short LFM-SM lags for Peach and
Bitter emerge as anomalies, and may represent issues
associated with the NLDAS reanalysis’ coarse resolution
and/or the representativeness of NLDAS soil conditions
for those sites. On the NLDAS grid, Peach is located very
near a locally dry area (Fig. 1b) representing the urbanized
area of Santa Clarita, which is (likely inappropriately)
impacting the SM at the Peach site. Bitter Canyon resides
very close to a large reservoir, Castaic Lake, although that
feature is not represented in the NLDAS land mask at
all. Yet, using nearby Placerita Canyon’s soil moisture
information in the Peach and Bitter Canyon models results
in improved fits (not shown) at both locations (R2 =
0.82 vs. 0.74 at Peach, and R2 = 0.76 vs. 0.70 at Bitter,
labeled as “modified” in Table 2), with optimal lag times
closer to the multi-site average. To a large degree, using
Placerita SM means essentially adopting that site’s soil
characteristics in place of their NLDAS assignments.

It might be wondered how the Laurel Canyon fit
would fare if soil moisture from another (termed “shifted”)
location were used in the prediction model. Figure 6c
replaces the site’s SM information with that from a grid
point (see star in Fig. 1) located 44 km to the northwest,
at the station’s original altitude but in the region of soil
texture class 6 (loam; Fig. 1c) that occupies a large (and
relatively unsampled) portion of the study area. While the
gross features representing the regional weather variations
have not changed much, and the displacement is only 3-
4 NLDAS grid points, the fit is clearly poorer (Fig. 6f),
even at the (shorter, 12 day) lag that maximizes the
partial correlation. Finally, it might also be wondered how
unsmoothed soil moisture might fare in these prediction
models. At every site, the use of unsmoothed SM
information results in diminished skill (not shown), mainly
because SM acquires high frequency spikes that do not
match up well with the noisy LFM data. However, this
creates more of an appearance than a reality of reduced
skill.

7. Concluding discussion

In this study, we have outlined a viable and simple
strategy for reconstructing the historical variation of
chamise LFM and for making short-term LFM forecasts
in the mountainous region northwest of Los Angeles on
a site-by-site basis. The live fuel moisture of chamise is
considered a very important indicator of the fire threat in
Southern California. Currently, chamise LFM is sampled
irregularly through the year at scattered locations in the
area’s mountains. Our strategy makes use of a readily
available, gridded soil moisture (SM) product provided by
the NLDAS, which enables us to fill in temporal gaps in
the LFM record as well as reconstruct past events. For this
study, we adopted the version of the NLDAS dataset that
employed the Noah land surface model.

Specifically, the prediction model for each site consists
of a time function and the moisture of the 40-100 cm
soil layer. The latter is considered as indicative of the
moisture available to the plants’ roots. The time function
reconstructs the LFM annual variation. Owing to the
properties of regression analysis, we can consider the model
as consisting of a correlation of LFM departures from
climatology with deviations of SM from its own annual
cycle.

An important characteristic of the model is that
LFM deviations were found to lag SM variations from
climatology. The lag was site-dependent, ranging between
12 and 38 days (neglecting sites with resolution-influenced
representativeness issues), with an average close to one
month although generally increasing with site elevation.
Stations at higher elevations tended to have a later LFM
peak time, as mean temperature decreases with altitude
and higher sites are often associated with cloudier weather
(i.e., less available sunshine). Additionally, soil texture,
porosity, and other characteristics vary through the study
area, influencing how rapidly precipitation reaches the root
zone and also how quickly the soil subsequently dries out
after the rains cease. Some difficulties that arose owing to
the coarse resolution of the NLDAS dataset were discussed.

The LFM-SM lag has important practical implications
for operational monitoring of live fuel moisture. The
NLDAS is not available in real time, but is instead delayed
by several days. The roughly one-month lag permits us
time to not only obtain the needed soil data but also
to apply some temporal filtering to smooth out some of
the higher frequency information that is not currently
considered useful. The lag also permits us to anticipate
how LFM might be changing over the short term.

There are a number of avenues through which this
analysis strategy could be improved. To keep the model
simple, we explicitly considered only one of the four
available soil layers in the Noah-based NLDAS dataset.
A weighted combination of layers might be indicated,
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especially for a plant with a complex root structure such
as chamise. Other versions of the NLDAS utilize different
land surface models, which utilize different assumptions
leading to different information about SM availability.
These versions might be combined in an ensemble sense to
provide more accurate SM input to the prediction model.
A higher resolution dataset would very likely assist with
problems we encountered with coastal and also the highest
elevation sampling sites.

The most useful practical improvement would be the
development of a single equation that could predict LFM
for all sites, given day of year and SM inputs. Such
an equation would have to incorporate elevation effects
seen in Figs. 3a and 4, and perhaps other meteorological
information, such as marine layer influences that influence
differences in plant behavior between coastal and inland
sites. This is left for future work.
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Table 1. Live fuel moisture sites elevation and the R-squares of the models.

Abbreviation Station Elevation (m) Time period # LFM samples Soil texture

LAU Laurel Cyn 398 2/5/01-6/27/13 285 2 (loamy sand)

LAT La Tuna Cyn 610 1/8/04-6/27/13 215 2 (loamy sand)

PLA Placerita Cyn 602 1/8/01-6/27/13 288 3 (sandy loam)

PEA Peach Motorway 579 1/22/05-6/27/13 217 2 (loamy sand)

PEA Peach Motorway modified 579 1/22/05-6/27/13 217 6 (loam)

GLE Glendora Ridge 751 11/12/02-6/27/13 227 6 (loam)

BIT Bitter Cyn 532 1/8/01-6/27/13 291 6 (loam)

BIT Bitter Cyn modified 532 1/8/01-6/27/13 291 9 (clay loam)

SCH Schueren Rd 678 1/8/01-6/27/13 288 6 (loam)

SAN San Marcos 816 4/1/00-6/27/13 176 6 (loam)

ROS Rose Vly 1096 5/1/00-6/27/13 162 6 (loam)

REY Reyes Ck 1233 1/15/04-6/27/13 145 2 (loamy sand)

Table 2. Live fuel moisture annual and prediction model information.

Abbreviation Station Elevation NLDAS LFM annual Soil moisture Max partial Partial Full model
(m) elevation model annual model correlation correlation R2

(m) R2 R2 (lag) at lag 29

LAU Laurel Cyn 398 100 0.57 0.57 0.81 (29) 0.81 0.85

LAT La Tuna Cyn 610 324 0.61 0.54 0.69 (35) 0.68 0.82

PLA Placerita Cyn 602 513 0.55 0.54 0.73 (36) 0.72 0.78

PEA Peach Motorway 579 526 0.63 0.47 0.54 (0) 0.48 0.74

PEA Peach Motorway 579 513 0.63 0.55 0.66 (21) 0.66 0.82
modified

GLE Glendora Ridge 751 636 0.59 0.57 0.67 (38) 0.67 0.77

BIT Bitter Cyn 532 695 0.48 0.46 0.68 (3) 0.64 0.70

BIT Bitter Cyn 532 513 0.48 0.54 0.74 (32) 0.74 0.76
modified

SCH Schueren Rd 678 385 0.74 0.68 0.67 (12) 0.65 0.84
shifted

SAN San Marcos 816 566 0.63 0.69 0.56 (19) 0.55 0.83

ROS Rose Vly 1096 1295 0.55 0.71 0.59 (18) 0.59 0.70

REY Reyes Ck 1233 1399 0.45 0.68 0.42 (28) 0.42 0.61
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Fig. 1. (a) Live Fuel Moisture surface site locations (black dots), with underlying topography (meters) shaded, along
with station abbreviations (see Table 1) and year site established; (b) 2000-2012 averaged 40-100cm layer soil moisture
(kg m2) mean (contoured) and standard deviation (shaded); and (c) Soil texture classification over Southern California,
all from the NLDAS/Noah dataset. Texture classes shown include: 2 (loamy sand), 3 (sandy loam), 6 (loam) and 9 (clay
loam). Excluded stations marked in grey. Star indicates “shifted” soil moisture location used in Laurel Canyon sensitivity
test (see text).
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Fig. 6. Time series for the Laurel Canyon site of (a) the LFM residuals (black) vs. the unlagged soil moisture residuals
(red); (b) the LFM vs. the 29-day lagged soil moisture residuals; and (c) the LFM vs. the 12-day lagged “shifted” soil
moisture residuals; and (d-f) are the LFM scatterplots of the LFM residuals vs. the soil moisture residuals of (a-c), with
the leas-squares fitting line overlaid, and R2s being 0.55, 0.66 and 0.44 respectively. Circled numbers are special episodes
referred in the text.
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Fig. 9. Time series of the predicted (red curves) and the observed (black dots) LFM for stations (a) Laurel Canyon;
(b) Placerita Canyon; (c) La Tuna Canyon; (d) Peach Motorway; (e) Rose Valley; (f) Bitter Canyon; (g) Schueren Road;
(h) San Marcos; (i) Glendora Ridge, and (j) Reyes Creek. The (roughly two year) time period to the right of the thick
vertical dashed line represents out-of-sample observations (white dots) and predictions (green curves). The model R2s
are based on observations to the left of the dashed lines. LFM observations were not available at Glendora Ridge after
10 January 2014.
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Fig. 11. Observed (black dots) and predicted (red curves) LFM between January 2006 and January 2008 for (a) Laurel
Cyn; (b) Placerita Cyn; and (c) San Marcos. On panels (b) and (c), predictions from stations shown above also included
for reference.
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Fig. 12. (a) Partial correlation between LFM and soil moisture vs. the time lag applied to the soil moisture for site
Laurel Canyon (black), including correlation curve after 29 day shift. (b) same as (a), but unshifted partial correlations
for additional sites Placerita Canyon, Glendora Ridge, La Tuna Canyon, Schueren Road, Bitter Canyon, San Marcos,
Rose Valley, and Peach Motorway.
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Fig. 13. The optimal LFM-soil moisture lag (days) vs. the site elevation (m).
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