Extreme Events at Summit, Greenland: 3 days, 3 years, and 33 summers

Nathaniel Miller¹, Von Walden², David Turner³, Matthew Shupe⁴, Ralf Bennartz⁵, Claire Pettersen¹, Mark Kulie¹, Christopher Cox², Benjamin Castellani⁴

- 1. SSEC, Univ. of Wisconsin, Madison, WI
- 2. Geography Dept, Univ. of Idaho, Moscow, ID
- 3. NSSL, NOAA, Norman, OK
- 4. CIRES, Univ. of Colorado, and NOAA, Boulder, CO
- 5. Atmospheric & Oceanic Sciences, Univ. of Wisconsin, Madison, WI

Photo: Christopher Cox

3 Perspectives

Summit Station
Elevation 3255 m
72°35'N
38°25'W

3 days

July 11, 2012 the Greenland Ice Sheet melt extent reached the Summit Station location for the first time since 1889. Low-level clouds present for three consecutive days.

3 years

"An Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit" (ICECAPS) provides measurements from June 2010 – present. Using Summit data we can examine what parameters ERA-Interim captures well and where there are deficiencies.

33 summers

ERA-Interim reanalysis data from 1980-2012 expands the time frame in order to investigate relatively recent trends.

Setting the stage for the melt event

- Warm front arrives on July 9th 2012
- A surface-based temperature inversion develops during the clear-sky scene
- Thin liquidbearing clouds present on July 10th

- An increase in precipitable water vapor (PWV) enhances the amount of moisture available for cloud formation.
- Radar observations indicate that the cloud is prominently liquid phase during the surface melt event.

- The presence of liquid-bearing clouds corresponds to weaker temperature inversions and an increase in the downwelling longwave radiation.
- The melt event was set up by advection of warm, moist air, while thin liquid-bearing clouds played an important role in warming the surface above the melting point. Without a specific range of cloud optical depth the surface temperature would not have reached above -3°C [Bennartz et. al. 2013, Nature].

Monthly Temperature

 ERA-Interim surface temperatures are biased high with lower variability.

Twice daily ICECAPS Radiosondes compared to ERA-Interim profiles.

Monthly Temperature

Twice daily ICECAPS Radiosondes compared to ERA-Interim profiles.

- ERA-Interim surface temperatures are biased high with lower variability.
- The temperature and variability at elevated atmospheric levels are well represented.

- The temperature at the top of the surfacebased inversion (SBI) is not as biased compared to the bias in the surface values.
- Perhaps the model is having difficulty capturing the shape of the inversion, especially the strong inversions.
- The bias in the ERA-Interim SBI intensity increases for stronger inversions.

Box 25-75%
Whiskers 5-95%
median
* mean

Liquid Water Path

LWP, July 2010 - Oct 2012

 LWP underestimated by ERA-Interim forecast fields as compared to the MWR derived LWP values, MWRRET (Turner et al. 2007, TGRS).

Box 25-75%
Whiskers 5-95%
— median
* mean

ERA-Interim Profiles: summer means and variability

 The average temperature of the free atmosphere for the last 3 summers is warmer than previous years.

 The temperature variability at elevated levels is higher for certain years including 2012. ERA-Interim 2m temperature forecast fields vs. NOAA 2m tower data from 2008-2012:

- ERA-Interim 2m daily maximum temp:
 - Bias = -0.46 K
 - RMSE = 3.12 K
- ERA-Interim 2m daily minimum temp:
 - Bias = 5.78 K
 - RMSE = 7.00 K

[0.030]

[0.124]

[-0.0050]

[0.0163]

(°C/year)

^{** 2} sample t-test (first 5 yrs and last 5 yrs) indicates significant differences to the 99% confidence level.

Opportunity for low-level liquid clouds to induce melting at Summit, Greenland

- 2012 had 13 days when the maximum temperature exceeded -3°C.
- The ICECAPS' MWR derived occurrence of summer low-level (thin) liquid-bearing clouds
 - 2010 73% (32%)
 - 2011 63% (28%)
 - 2012 58% (26%)

Conclusions

- July 2012 melt event at Summit influenced by the arrival of warmer than normal air aloft and enhanced surface warming due to 3 days of thin low-level liquid-bearing clouds.
- 3 years of ICECAPS data indicates ERA-Interim has inadequacies capturing liquid water path values, yet more accurately estimates the daily maximum temperatures.
- 33 years of ERA-Interim reanalysis data indicates a relatively recent warming trend in the median summer daily maximum temperatures.
- The opportunity for thin low-level liquid-bearing clouds to push surface temperatures above freezing was much greater in 2012 compared to previous years.

Data Sources

- ICECAPS is supported by the National Science Foundation under grants No. 0904152, 0856559, 0856773.
- Near surface meteorological data was provided by NOAA's Global Monitoring Division.
- ECMWF ERA-Interim forecast field data used in this study have been obtained from the ECMWF data server.
- ERA-Interim Profile values were obtained from NCAR's CISL Research Data Archive.

Figure: Chris Cox