

¹Department of Engineering, Physics, Systems, Providence College, Providence, RI ³NOAA / Earth System Research Laboratory, Boulder, CO

^{1,2}Mark W. Seefeldt (mark.seefeldt@colorado.edu), ¹Michael L. Tice, ²John J. Cassano, and ³Matthew D. Shupe ²Cooperative Institute for Research in the Environmental Sciences, University of Colorado at Boulder, Boulder, CO

Introduction

The Weather Research and Forecasting (WRF) model is being used for applications in the polar regions ranging from real-time forecasting to regional climate simulations. A key to the performance of WRF in the polar regions is the evaluation and identification of an ideal suite of WRF physics parameterizations that best represent the polar atmosphere. This study evaluates 32 combinations of WRF 3.4.1 shortwave radiation, longwave radiation, and microphysics in month-long regional climate simulations over four months and two domains (256 sims). The results are of the simulations are statistically compared against surface meteorology and radiation observations from Barrow, Alaska and Summit Camp, Greenland. The end goal is the identification of a preferred combination(s) of radiation and microphysics parameterizations for use in the Arctic.

Methodology

WRF Configuration:

- WRF 3.4.1 (released 08/2012)
- Model forcing: Lateral/Boundary – ERA-Interim Sea-ice – NSIDC Near-Real-Time
- 2x Horizontal Domains: Alaska – centered on Barrow, AK Greenland – centered on Summit Camp Dom. 1 – 30 km, Dom. 2 – 10 km -one-way nesting
- Timestep: D1 180 s, D2 60 s
- Vertical 40 levels, 50 mb top
- The simulations start on the last day of the previous month, run the entire month, and the first 24 hours are discarded.
- <u>4x</u> Dates: July 2011, October 2011, January 2012, April 2012 **Greenland simulations.**
- Non-varying physics parameterizations: Land Surface – Noah LSM (2), Boundary Layer – MYJ (2) Surface Layer – Eta (2), Cumulus – Grell-Devenyi (3) Fraction Sea Ice – Y (1), SST Update – Y (1)
- 4x Radiation Combinations (longwave / shortwave): RRTM/Godd. (1/2), CAM (3/3), RRTMG (4/4), N. Goddard (5/5)
- 8x Microphysics Options: Lin (2), WRF-SM5 (4), WRF-SM6 (6), Goddard (7), New Thompson (8), Morrison (10), Stony Brook (13), WRF-DM6(14)

domains for the Alaska and

Evaluation of WRF Radiation and Microphysics Parameterizations for Use in the Arctic

Fig. 1: Geographic map indicating the 30 km (D1) and the 10km (D2)

Observations:

- The WRF simulations are compared against observations to determine the better performing physics parameterizations
- Observations: temperature and dew point at 2 m, wind speed and wind direction at 10 m, surface pressure, downwelling shortwave radiation, and downwelling longwave radation
- In the near future, radiosonde, ice-water path, and liquidwater path observations will be included in the analysis
- Barrow, AK: DOE ARM North Slope of Alaska Facility
- Summit Camp: Met. NOAA-Global Monitoring Division,

Statistical Comparison:

- Values from WRF are extracted using the WRF time series ability for the nearest model point to Barrow and Summit.
- Hourly averages created from the 1m/3m WRF time series.
- Hourly averages created from 1-minute observations.
- Time series plots (Fig. 2) are created for each meteorological and radiation variable.
- Statistical measures of Bias, RMSE, and Correlation are calculated for each variable.
- Each of the 32 physics configurations are ranked (Fig. 3) in each statistical category (Bias, RMSE, and Corr.) for each variable.
- The rankings of the statistical measures are averaged for each variable for each physics configuration. The standard dev. is also calculated.

Barrow - D2 - 201107	P_SFC	2				T_2M	I				TD_2	М			
WRF Configuration	BIAS	RMSE	CORR	AVG	STD	BIAS	RMSE	CORR	AVG	STD	BIAS	RMSE	CORR	AVG	STD
lw_1-sw_2-mp_2	5	12	16	11.0	5.6	22	22	10	18.0	6.9	23	20	5	16.0	9.6
lw_1-sw_2-mp_4	14	25	28	22.3	7.4	18	17	7	14.0	6.1	17	16	14	15.7	1.5
lw_1-sw_2-mp_6	13	19	28	20.0	7.5	12	12	17	13.7	2.9	11	15	24	16.7	6.7
lw_1-sw_2-mp_7	7	2	3	4.0	2.6	10	14	20	14.7	5.0	16	14	11	13.7	2.5
lw_1-sw_2-mp_8	3	1	1	1.7	1.2	14	13	15	14.0	1.0	13	11	3	9.0	5.3
lw_1-sw_2-mp_10	1	9	17	9.0	8.0	5	11	30	15.3	13.1	2	7	30	13.0	14.9
lw_1-sw_2-mp_13	6	21	30	19.0	12.1	3	2	23	9.3	11.8	5	4	16	8.3	6.7
lw_1-sw_2-mp_14	8	17	27	17.3	9.5	5	8	26	13.0	11.4	15	20	28	21.0	6.6
lw_3-sw_3-mp_2	32	29	19	26.7	6.8	27	26	19	24.0	4.4	28	27	20	25.0	4.4
lw_3-sw_3-mp_4	25	32	32	29.7	4.0	29	32	31	30.7	1.5	29	31	31	30.3	1.2
lw_3-sw_3-mp_6	29	31	31	30.3	1.2	29	27	18	24.7	5.9	27	25	20	24.0	3.6
lw_3-sw_3-mp_7	26	16	10	17.3	8.1	31	30	22	27.7	4.9	32	32	18	27.3	8.1
lw_3-sw_3-mp_8	31	30	21	27.3	5.5	28	28	27	27.7	0.6	31	30	25	28.7	3.2
lw_3-sw_3-mp_10	30	28	20	26.0	5.3	32	31	24	29.0	4.4	25	26	26	25.7	0.6
lw_3-sw_3-mp_13	20	11	5	12.0	7.5	8	6	2	5.3	3.1	24	24	10	19.3	8.1
lw_3-sw_3-mp_14	10	8	14	10.7	3.1	25	25	6	18.7	11.0	30	28	6	21.3	13.3
lw_4-sw_4-mp_2	15	5	12	10.7	5.1	15	14	9	12.7	3.2	20	16	6	14.0	7.2
lw_4-sw_4-mp_4	19	13	12	14.7	3.8	19	20	14	17.7	3.2	21	19	6	15.3	8.1
lw_4-sw_4-mp_6	11	20	25	18.7	7.1	26	29	32	29.0	3.0	25	29	32	28.7	3.5
lw_4-sw_4-mp_7	18	10	11	13.0	4.4	9	7	1	5.7	4.2	8	6	4	6.0	2.0

Fig. 3: Rankings of statistical measures of Bias, RMSE, and Corr. for each physics configuration for Barrow, Domain 2, July 2011. The mean and standard dev. for the three statistical rankings are also calculated.

This process is repeated for each variable (6), for each site (2), for each domain (2), and for each month (4). Different aggregations (e.g. by site, by month, by surface met.) are created to evaluate the relative performance of each WRF physics configuration.

Rad. – Steffen Research Group, Univ. of Colorado

Fig. 2: Time series plot comparing WRF simulation results to observations for P sfc, T 2m, T_d 2m, WS 10m, and WD 10m for Barrow, Domain 2, July 2011.

Results

Key: Radiation (lw_#-sw_#) 1-2 : RRTM/Go Microphysics (mp_#) 2:Lin 4:WRF-SN

Total – Variables/Month

- The radiation parame the significant factor
- RRTMG rad does cons
- RRTM/Goddard is cor lower performing radi
- N.Thompson radiation in Barrow, CAM at Su
- Goddard mp is consist top of the rankings w selected radiation cor

Energy Budget (T_2m, S'

- RRTMG is consistently when looking at radia
- N.Thompson perform
- CAM radiation is over best option
- Goddard provides the microphysics results
- Beyond the Goddard, microphysics is not as

July 2011 / April 2012 –

- There is some variation month to month in th
- RRTM/Goddard perfo reasonable in July and
- CAM performs poor in good in April
- **RRTMG** radiation and microphysics continue perform all others

Kev: Radiation (lw #-sw #) 1-2 : RRTM/Goddard 3-3 : CAM 4-4 : RRTM0 5-5 : New Thompson 4:WRF-SM5 6:WRF-SM6 7:Goddard crophysics (mp #) 2:Lin 8:N.Thompson 10:Morrison 13:Stony Brook 14:WRF-DM6

Conclusions

- exclusively perform poorly.
- is some variation by site.

3-3 : CAMM56:WRF-SM67:Godda	ard	<mark>4-4:R</mark> 8:N.Th		son	10:Morr	rison 1	5-5 : N L3:Sto	New T ony Br	hom ook	oson 14:WRF	-DM6
nc/Domaina											
		Barro Rank 1	w - Tota AVG 13.12	I STD 6.35	COMBO	mp_7	Summi Rank 1	t Camp - AVG 10.84	Total STD (6.40	COMBO w_4-sw_4	mp_7
eterizations is)	23	13.69 14.77 14.97	8.21 10.33 8.26	lw_4-sw_4 lw_4-sw_4	mp_10 mp_13 mp_8	2 3 4	11.76 12.48 12.84	6.47 8.08	w_3-sw_3 w_4-sw_4	mp_7 mp_8 mp_14
in the results		5	15.03 15.42	9.56 9.49	Iw_5-sw_5 Iw_5-sw_5	mp_8 mp_10	4 5 6 7	12.84 12.87 12.92	9.04 7.72	w_3-sw_3 w_3-sw_3 w_3-sw_3	mp_14 mp_10 mp_8
sistently well		7 8 9	15.44 15.56 15.64	8.58 10.25 7.20	Iw_5-sw_5 Iw_5-sw_5 Iw_3-sw_3	mp_10 mp_14 mp_2	7 8 9	13.87 13.87 14.02	6.59 6.27	w_4-sw_4 w_4-sw_4 w_4-sw_4	mp_14 mp_4 mp_6
, nsistently the		10 11 12 13	15.76 15.79 15.80	7.64 10.42	Iw_4-sw_4 Iw_3-sw_3 Iw_5-sw_5	mp_2 mp_6 mp_13	10 11 12 13	14.09 14.29 14.38	6.91 6.58	w_4-sw_4 w_3-sw_3 w_3-sw_3	mp_2 mp_2 mp_6 mp_10
liation combo	ר	13 14 15 16	15.91 15.96 16.08	6.85 7.86 7.60	Iw_1-sw_2 Iw_4-sw_4 Iw_3-sw_3	mp_7 mp_4 mp_4 mp_7	13 14 15 16	14.41 14.52 15.82 17.08	7.45 8.33	w_4-sw_4 w_3-sw_3 w_5-sw_5 w_4-sw_4	mp_10 mp_4 mp_10 mp_13
n door botto	r	17 18 19	16.22 16.24 16.43	8.71 8.75 9.74	Iw_4-sw_4 Iw_3-sw_3 Iw_3-sw_3	mp_14 mp_13 mp_10	17 18 19	17.48 17.54 17.71	9.34 6.91 8.06	w_5-sw_5 w_5-sw_5 w_1-sw_2	mp_10 mp_7 mp_13 mp_7
n does belle	ſ	20 21 22	16.53 16.63 16.64	7.83 9.41 8.45	Iw_3-sw_3 Iw_5-sw_5 Iw_3-sw_3	mp_14 mp_6 mp_8	20 21 22	17.75 18.01 18.04	8.80 9.67 7.44	w_1-sw_2 w_1-sw_2 w_5-sw_5 w_1-sw_2	mp_2 mp_14 mp_14
mmit		23 24 25	16.65 16.76	9.84 11.20 7.18	Iw_1-sw_2 Iw_5-sw_5	mp_0 mp_8 mp_2	23 24 25	18.30 18.35 18.66	9.71 9.72	w_1 sw_2 w_1-sw_2 w_3-sw_3	mp_11 mp_8 mp_13 mp_6
stently at the		26 27 28	17.08 17.53 17.63	9.05 10.73	Iw_1-sw_2 Iw_1-sw_2 Iw_5-sw_5	mp_0 mp_2 mp_13 mp_4	25 26 27 28	18.66 18.69	7.89 9.83	w_5-sw_5 w_1-sw_2 w_5-sw_5	mp_0 mp_4 mp_4 mp_8
rithin a		29 30 31	17.65 17.85 18.24	7.94 8.55 8.61	Iw_1-sw_2 Iw_1-sw_2 Iw_1-sw_2	mp_4 mp_4 mp_6 mp_14	20 29 30 31	19.47 20.21 21 44	7.53 10.56	w_5 sw_5 w_1-sw_2 w_5-sw_5 w_1-sw_2	mp_6 mp_2 mp_10
mbination		32 Barrow	19.03	11.08	Iw_1-sw_2	mp_10	32	21.50	10.46	w_1-sw_2	mp_13
W d, LW d):		Rank	AVG 11.47 13.32	STD 4.11 8.34	COMBO	mp_7 mp_13	Rank	AVG 8.99	STD 4.6	COMBO 9 Iw_4-sw_ 0 Iw_3-sw	4 mp_7 3 mp_7
v the best		3 4 5	13.36 14.19 14.22	5.77 8.35 6.84	w_4-sw_4 w_1-sw_2	mp_10 mp_13 mp_6	- 3 4 5	11.28 11.31 11.33	6.5 5.3 4.0	0 w_4-sw_ 6 w_4-sw_ 8 w_4-sw_	4 mp_8 4 mp_6 4 mp_14
y the best stion and tom	n	6 7 8	14.61 14.78 14.81	4.70 6.14 6.98	lw_4-sw_4 lw_3-sw_3 lw_4-sw_4	mp_4 mp_10 mp_8	6 7 8	11.34 11.36 11.74	5.5 7.2 5.2	8 <mark> w_4-sw_</mark> 9 w_3-sw_ 6 w_3-sw	4 mp_4 3 mp_8 3 mp_14
	ιþ	9 10 11	14.85 14.88 14.90	5.83 6.75 5.99	lw_3-sw_3 lw_1-sw_2 lw_3-sw_3	mp_13 mp_4 mp_6	9 10 11	11.83 13.25 13.63	8.6 5.2 7.4	2 lw_3-sw_ 6 lw_4-sw_ 4 lw_4-sw_	3 mp_10 4 mp_2 4 mp_10
is poorly		12 13 14	15.01 15.56 15.94	7.13 6.11 5.74	2 lw_1-sw_2 lw_3-sw_3	mp_7 mp_4 mp_2	12 13 14	14.01 14.42 14.52	5.5 5.0 5.0	8 w_3-sw_ 6 w_3-sw_ 4 w_3-sw	3 mp_4 3 mp_2 3 mp_6
rall the secon	d	15 16 17	15.99 16.17 16.36	5.03 4.45 4.58	lw_4-sw_4 lw_4-sw_4 lw_5-sw_5	mp_2 mp_6 mp_10	15 16 17	15.79 17.11 17.80	7.1 6.7 6.4	5 <mark>Iw_5-sw_</mark> 1 <mark>Iw_1-sw_</mark> 9 Iw_4-sw_	5 mp_10 2 mp_7 4 mp_13
		18 19 20	16.78 16.88	6.08 7.35	Iw_3-sw_3 Iw_1-sw_2	mp_10 mp_8 mp_8 mp_14	18 19 20	17.99 18.17 18.74	6.1 6.7	7 lw_5-sw_ 7 lw_5-sw_ 5 lw_1-sw_ 1 lw_5-sw	5 mp_1 2 mp_2 5 mp_14
e best		20 21 22	16.93 16.99	7.16 6.94	Iw_1-sw_2 Iw_5-sw_5 Iw_3-sw_3	mp_14 mp_7 mp_7	20 21 22	19.04 19.27	5.7 5.8	1 1w_5-sw_ 0 1w_1-sw_ 1 1w_3-sw_	2 mp_14 3 mp_13
		23 24 25	17.14 17.24 17.36	6.51 6.15 8.14	Iw_3-sw_3 Iw_4-sw_4 Iw_1-sw_2	mp_14 mp_14 mp_2	23 24 25	19.34 19.61 19.66	7.9 8.5 8.6	4 Iw_5-sw_ 6 Iw_5-sw_ 9 Iw_1-sw_	5 mp_4 5 mp_6 2 mp_8
corting the		26 27 28	17.74 17.90 17.93	6.01 8.17 10.77	lw_5-sw_5 lw_5-sw_5 lw_1-sw_2	mp_8 mp_6 mp_10	26 27 28	19.83 20.13 20.16	5.9 6.2 4.2	6 lw_1-sw_ 0 lw_1-sw_ 6 lw_5-sw_	2 mp_4 2 mp_6 5 mp_13
, sorting the		29 30 31	18.42 18.65 19.14	9.94 7.93 7.77	lw_5-sw_5 lw_5-sw_5 lw 5-sw 5	mp_13 mp_14 mp_4	29 30 31	20.64 21.36 22.51	6.3 7.6 7.6	1 <mark>lw_1-sw_</mark> 3 <mark>lw_5-sw_</mark> 3 lw 1-sw	2 mp_135 mp_82 mp_10
s clear		32 July 20	 lw_5-sw_5	mp_2	32 23.30 6.30 Iw_5-sw_5 mp_2						
Total:		Rank 1 2	AVG 10.28 10.56	STD 9.53 7.95	COMBO lw_4-sw_4 lw_4-sw_4	mp_13 mp_7	Rank 1 2	AVG 10.17 10.50	STD 6.21 6.33	COMBO Iw_4-sw_4 Iw_3-sw_3	mp_7 mp_7
on from		3 4 5	12.22 13.47 13.60	7.05 8.10 6.63	lw_4-sw_4 lw_1-sw_2 lw_4-sw_4	mp_10 mp_7 mp_2	3 4 5	11.69 12.07 12.61	6.43 8.78 7.17	lw_3-sw_3 lw_5-sw_5 lw_3-sw_3	mp_6 mp_10 mp_4
ne results		6 7 8	13.96 14.18 14.54	9.02 8.07 10.63	lw_1-sw_2 lw_4-sw_4 lw_5-sw_5	mp_8 mp_8 mp_13	6 7 8	12.65 12.67 13.17	6.26 7.15 5.97	lw_3-sw_3 lw_3-sw_3 lw_4-sw_4	mp_2 mp_14 mp_6
orms		9 10 11	14.56 14.65 14.68	7.65 8.16 10.66	lw_4-sw_4 lw_1-sw_2 lw_4-sw_4	mp_4 mp_6 mp_14	9 10 11	13.36 13.50 13.71	7.05 9.07 9.01	lw_4-sw_4 lw_4-sw_4 lw_3-sw_3	mp_4 mp_8 mp_8
d noor in Anr	;	12 13 14	14.74 15.60 15.68	7.11 11.32 11.66	lw_1-sw_2 lw_1-sw_2 lw_1-sw_2	mp_4 mp_13 mp_10	12 13 14	13.97 14.03 14.03	6.53 8.71 10.91	lw_4-sw_4 lw_3-sw_3 lw_5-sw_5	mp_2 mp_10 mp_8
	11	15 16 17	16.07 16.51 16.54	11.11 8.47 8.78	lw_3-sw_3 lw_5-sw_5 lw_4-sw_4	mp_10 mp_7 mp_6	15 16 17	14.07 14.15 14.39	9.63 10.22 10.22	lw_4-sw_4 lw_5-sw_5 lw_5-sw_5	mp_10 mp_7 mp_14
n July and		18 19 20	16.72 16.75 16.90	8.08 10.08 9.53	lw_1-sw_2 lw_3-sw_3 lw_5-sw_5	mp_14 mp_13 mp_14	18 19 20	14.43 15.56 16.24	6.57 9.73 9.94	lw_4-sw_4 lw_5-sw_5 lw_5-sw_5	mp_14 mp_6 mp_4
		21 22 22	17.82 17.85	9.09 7.13	lw_5-sw_5 lw_5-sw_5	mp_6 mp_10 mp_2	21 22 22	16.49 16.82	7.13	lw_5-sw_5 lw_5-sw_5	mp_13 mp_2 mp_7
l Goddard		23 24 25	19.00 19.32	8.49 7.75	lw_3-sw_3 lw_3-sw_3 lw_3-sw_3	mp_14 mp_2 mp_2	23 24 25	19.79	8.81 7.91	Iw_4-sw_4 Iw_3-sw_3	mp_7 mp_13 mp_13
es to out		26 27 28	19.47 19.75 19.78	8.78 6.90 7.84	Iw_3-sw_3 Iw_5-sw_5 Iw_3-sw_3	mp_6 mp_4 mp_7	26 27 28	20.49 20.58 21.54	8.61 6.72 7.21	lw_1-sw_2 lw_1-sw_2 lw_1-sw_2	mp_2 mp_14 mp_4
		29 30 31	19.83 20.03 20.21	8.10 7.37 8.64	Iw_3-sw_3 Iw_5-sw_5 Iw_5-sw_5	mp_8 mp_8 mp_2	29 30 31	21.86 22.40 25.57	6.76 9.54 8.46	lw_1-sw_2 lw_1-sw_2 lw_1-sw_2	mp_6 mp_8 mp_10
		1 00	1 20 72	0.00			1 22	1 20 05	7 6 6	1	

• The RRTMG radiation combination and the Goddard microphysics consistently out performs all other radiation and microphysics schemes in nearly every comparison.

The RRTM/Goddard radiation and the Lin, WRF-SM5, and

WRF-SM6 microphysics schemes consistently, although not

There is a monthly/seasonal dependence on the results. There