13th Conference on Atmospheric Radiation

7.3

Relating black carbon content to reduction of snow albedo

Richard E. Brandt, University of Washington, Seattle, WA; and S. G. Warren

In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction.

Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. Furthermore, deep snow would be required, because the spectral signature of sooty snow is the same as that of thin snow. Also, accurate knowledge of the instrument's shadowing correction would be needed, because its value is typically ~1%; i.e., of similar magnitude to the albedo reduction for typical soot amounts in natural snow.

We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates tens of centimeters into snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation may be absorbed by the walls of the container. (3) In a laboratory experiment only a narrow field of view can be measured, rather than a hemispheric field of view, so a laboratory experiment measures the bidirectional reflectance for particular angles rather than albedo.

The disadvantage of an outdoor experiment is that one must wait for appropriate weather: low temperature (-20 to -40 C), calm winds, diffuse incident radiation, and no precipitation during the experiment.

Using a small snowmaking machine, a snowpack of area 75 square meters and depth 15 cm is made in a period of 4 hours, deposited over a natural snowpack. A soot suspension is maintained in a soniccated bath, which can be entrained into the water stream. Two snowpacks are made side-by-side, with and without added soot. For a soot content of 1 ppm, 3 g soot were dispersed into 3 tons of snow.

The spectral albedos of the two snowpacks are in agreement for near-infrared wavelengths beyond 1 micrometer, but diverge at shorter wavelengths, as expected. The soot particles in the artificial snowpack are probably located mostly inside ice grains, but the measured albedo reduction implies a mass-absorption cross-section of about 6 square meters per gram, close to that expected for an external mixture.

wrf recordingRecorded presentation

Session 7, Remote Sensing Applications
Wednesday, 30 June 2010, 8:30 AM-10:00 AM, Pacific Northwest Ballroom

Previous paper  Next paper

Browse or search entire meeting

AMS Home Page