Generalized Radiative Transfer Theory: Accounting for Unresolved Spatial Variability in Predominantly Scattering Regimes

Anthony B. Davis \& Feng Xu
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91001, USA; Anthony.B.Davis@jpl.nasa.gov

Motivation

Classic radiative transfer equations (RTEs) in integro-differential form are derived assuming the Beer-Lambert (BL) law accounts for light propagation in the medium, and various numerical solutions have been developed within this framework. However, natural media are to some extent variable in space, thus the BL law of exponential extinction does not apply on average due to its nonlinearity. What is the average value of direct transmission $T(s)=\mathrm{e}^{-\sigma s}$, where s is a fixed distance and σ is random mean extinction coefficient over distance s ?
To this problem, some approaches seek an effective material property $\sigma_{\text {eff }}$ to use in the solution of a transport problem for a uniform medium [1-3], and some linearly combine solutions from uniform media and approximate solutions for spatially correlated medium [4-5]. Yet others introduce new RTEs to solve [6-10].
In the framework of developing new RTEs for spatially-correlated stochastic media, we derive and use a power-law model for direct light transmission and solve the RTE numerically by a Monte Carlo method and by a Markov chain method (2-stream case only, for the moment) [11].
${ }^{\dagger}$ Conley \& Collins [12] propose the same power-law transmission law to model spectral variability, beyond correlated- k

Generalized radiative transfer equation

In a uniform plane-parallel optical medium along the direction $\boldsymbol{\Omega}$ on the d-dimensional sphere
Integral form
$I(\tau, \boldsymbol{\Omega})=\int_{\Xi} \int_{0}^{\tau^{*}} K\left(\tau, \boldsymbol{\Omega} ; \tau^{\prime}, \boldsymbol{\Omega}^{\prime}\right) I\left(\tau^{\prime}, \boldsymbol{\Omega}^{\prime}\right) \mathrm{d} \tau \mathrm{d} \boldsymbol{\Omega}^{\prime}+I_{0}(\tau, \boldsymbol{\Omega})$
$I=I_{0}+I_{\text {dif }}$, where I_{0} is the direct light contribution and $I_{\text {dif }}$ is the diffuse light contribution
$I_{0}(\tau, \boldsymbol{\Omega})=T\left(\left|\tau-\tau^{\prime}\right| / \mu\right) \delta\left(\boldsymbol{\Omega}-\boldsymbol{\Omega}_{0}\right)$
$K\left(\tau, \boldsymbol{\Omega} ; \tau^{\prime}, \boldsymbol{\Omega}^{\prime}\right)=\omega p\left(\boldsymbol{\Omega} \cdot \boldsymbol{\Omega}^{\prime}\right) \Theta\left(\frac{\tau-\tau^{\prime}}{\mu}\right) \frac{\dot{T}\left(\left|\tau-\tau^{\prime}\right| / \mu\right)}{|\mu|}$
where $\Theta(x)$ is the Heaviside step function

Power law transmission model
Assuming Gamma distribution of σ, $\operatorname{Pr}\{\sigma, \mathrm{d} \sigma\}=\frac{1}{\Gamma(a)} \sigma^{a-1} \exp \left(-\frac{a \sigma}{\bar{\sigma}}\right) \mathrm{d} \sigma$ with mean extinction $\bar{\sigma}$ and variability parameter $a=\left(\overline{\sigma^{2}} / \bar{\sigma}^{2}-1\right)^{-1}$ $T_{a}(s)=\int_{0}^{\infty} \exp (-\sigma s) \operatorname{Pr}\{\sigma, \mathrm{d} \sigma\}=\frac{1}{(1+\bar{\sigma} s / a)^{a}}$
(b) Spatially correlated medium with $(\bar{\sigma}, a)$
(a) Uniform medium σ
(b) Spatily correater Beer-Lambert law: $T=T_{\mathrm{BL}}=\exp (-x) \quad$ Power law model: $\quad T=T_{a}=(1+x / a)^{-a}$

$$
\dot{T}=\dot{T}_{\mathrm{BL}}=-T_{\mathrm{BL}} \quad \dot{T}=\dot{T}_{a}=-(1+x / a)^{-(a+1)} \neq-T_{a}
$$

Reciprocity law follows.
Integro-differential RTE based on Beer's law $\left[\boldsymbol{\Omega}_{z} \frac{\mathrm{~d}}{\mathrm{~d} z}+\sigma\right] I_{\mathrm{dif}}(z, \boldsymbol{\Omega})=$ $\sigma_{s} \int_{\Xi_{d}} p\left(\boldsymbol{\Omega}^{\prime} \cdot \boldsymbol{\Omega}\right) I_{\mathrm{dif}}\left(z, \boldsymbol{\Omega}^{\prime}\right) \mathrm{d} \boldsymbol{\Omega}^{\prime}+F_{0} \exp \left(-\frac{\sigma z}{\mu_{0}}\right) \sigma_{\mathrm{s}} p\left(\boldsymbol{\Omega}_{\mathbf{q}} \cdot \boldsymbol{\Omega}\right)$

Reciprocity law breaks !!!
Integro-differential RTE based on power law

Not yet known !!! Cf. [10]

Monte Carlo solution in $\boldsymbol{d}=\mathbf{2}$

Six traces of random walks with 100 isotropic scatterings and step sequence that follow power-law cumulative probabilities and PDFs. Both scatterings and steps use the same sequences of uniform random variables. Values of a are ∞ (exponential law), 10, 5, 2, 1.5 and 1.2.
Note how longer jumps occur as a decreases, and (inset) how shorter paths are required to cross a plane-parallel slab of a given thickness.
\leftarrow

Markov chain solution in $d=1$

a) General formalism \quad 1D phase function: $\left\{\begin{array}{l}p(0)=(1+g) / 2 \\ p(\pi)=(1-g) / 2\end{array}\right.$ $\boldsymbol{\Pi}=\boldsymbol{\Pi}_{\mathrm{s}}+\mathbf{Q} \times \boldsymbol{\Pi}_{\mathrm{s}}+\mathbf{Q} \times \mathbf{Q} \times \boldsymbol{\Pi}_{\mathrm{s}}+\ldots=(\mathbf{E}-\mathbf{Q})^{-1} \times \boldsymbol{\Pi}_{\mathrm{s}}$
$\boldsymbol{\Pi}_{\mathrm{s}}$: initial distribution of $1^{\text {st }}$ order scattered photons

Numerical investigation in $\boldsymbol{d}=1$

Radiation fields throughout the 1 D medium with $\tau=10$ and (a) forward phase function $p(0)=0.8$ and single scattering albedo $\omega=1$; (b) $p(0)=0.5$ and $\omega=1$; (c) $p(0)=0.9$ and $\omega=1$, and (d) $p(0)=0.9$ and $\omega=0.98$. The left subplot gives scalar flux J, with $J=I_{\text {dif, up }}+I_{\text {dif, down }}$ while the right subplot gives the vector flux F, with $F=I_{\mathrm{dif}, \text { up }}-I_{\mathrm{dif}, \text { down }}$.
(a)

(b)

(d)

References:

[1] A. Davis, et al., J. Geophys. Res. 95, 11729 (1990).
[2] R.F. Cahalan, Nonlinear Proc. Geophys. 1, 156 (1994).
[3] B. Cairns et al., J. Atmos. Sci. 57, 700 (2000).
[4] R.F. Cahalan et al., J. Atmos. Sci. 51, 3776 (1994).
[5] H.W. Barker, J. Atmos. Sci. 53, 2289 (1996).
[6] O.A. Avaste and G.M. Vainikko, Acad. Sci. USSR, Atmos. Oceanic Phys. 10, 1054 (1973).
[7] C.D. Levermore, G.C. Pomraning, D.L. Sanzo, and J. Wong, J. Math. Phys. 27, 2526 (1986).
[8] G.L. Stephens, J. Atmos. Sci. 45, 1837 (1988).
[9] A.B. Davis, Notes in Computational Science and Engineering 84, Springer, New York (NY), 2006.
[10] E.W. Larsen and R. Vasques, J. Quant. Spectrosc. Radiat. Transfer 112, 619 (2011).
[11] A.B. Davis and F. Xu, Transport Theory and Statistical Physics (2014, under revision).
[12] A.J. Conley and W.D. Collins, J. Quant. Spectrosc. Radiat. Transfer 112, 1525 (2011).
[13] A. Davis and A. Marshak, in Fractal Frontiers, Eds. M.M. Novak and T.G. Dewey, World Scientific (Singapore), pp. 63-72 (1997).

