


Motivation

Global snowfall rates very
uncertain, both snow at the
surface and above a
melting layer

Space-borne 94-GHz radar
potentially the best
instrument we have

But backscatter cross-
section of snowflakes very
uncertain for D > A

Global-mean IWP estimates
dominated by deep clouds
where retrievals are most
uncertain



Overview

At cm wavelengths: D < A
- Rayleigh theory applies: radar reflectivity proportional to mass squared
- Snowfall rates sensitive to mass-size and fallspeed-size assumptions
At mm wavelengths: D > A
- Particle shape important in addition to mass

- Matrosov et al (2005), Hogan et al. (2012): /arge ice particles can be
represented by homogeneous oblate ("soft”) spheroids with aspect ratio
0.6: characterize shape only by dimension in direction of propagation

- Petty & Huang (2010), Tyyneld et al. (2011): soft spheroids
underestimate backscatter: need to represent exact shape

Who'’s right?
- Is brute-force computation the only way (e.g. Discrete Dipole
Approximation with thousands of snowflake shapes)?
This talk: an equation can be derived for cross-section because
- Snowflakes have fractal structure that can be described statistically
- The Rayleigh-Gans approximation is applicable



The Rayleigh-Gans approximation

e Approximate the field at any point by the incident field

e Sum backscattered returns from each volume element coherently
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Aggregate from Westbrook et al. (2004) model
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e Rayleigh-Gans applicableif |m - 1| « 1 and |p| « 1
- where p = kD(m- 1) is the phase shift across the particle and A= 2n/A

e Solid ice in the microwave has m = 1.77, but on the scale of the
wavelength the particle is mostly air so effective m close to 1

- Tyynela et al. (2012) found that Rayleigh-Gans is a good approximation
compared to other uncertainties, e.q. in ice structure




The Rayleigh-Gans approximation

-
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e Backscatter cross-section is proportional to the power in the Fourier
component of A(s) at the scale of half the wavelength

e Can we parameterize A(s) and its variation?

K TCS 3Ts
A(s) = aog [(1 + —) COS (—) -+ K COS ( )} <—— Mean structure, « =
3 D D Kurtosis parameter

H . .
n Z a’ cos 2Tjs +a”sin 2Tjs ~ <«— Fluctuations from
— D D the mean

[

n r
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Mean structure of aggregate snowflake

e Hydrodynamic forces cause ice particles to fall horizontally, so we
need separate analysis for horizontally and vertically viewing radar
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e Mean structure of 50 simulated aggregates of bullet rosettes is very
well captured by the two-cosine model with kurtosis parameters of

k = =0.11 for horizontal structure
k = 0.19 for vertical structure
e Slightly different numbers for aggregates of other monomer crystals



Aggregate self-similar structure

e Power spectrum of fluctuations obeys a -5/3 power law

- Why the Kolmogorov value when no turbulence involved? Coincidence?
- Aggregates of columns and plates show the same slope
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New equation for backscatter

e Assumptions:
- Power-law: (a} +a’*) /(a5) = B(2/) 7"
- Fluctuations at different scales are uncorrelated: (a}a;) = {(a7ay) =0
- Sins and cosine terms at the same scale are uncorrelated: (aja;) =0

e Leads to the Self-Similar Rayleigh-Gans approximation for ensemble-
mean backscatter cross-section:
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- where x =D
e The {} term describes only the effect of the shape of the particle; the
total volume of ice (i.e. the mass) is described only by V

- For small particles the {} term reduces to 4/n2, yielding the Rayleigh
approximation

Hogan and Westbrook (JAS 2014, in press)



Radar scattering by ice
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e Internal structures on scale of wavelength lead to significantly higher
backscatter than “soft spheroids” (proposed by Hogan et al. 2012)

e The new SSRG equation matches the ensemble-mean well
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Example of impact on IWC retrievals
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summary

A new “Self-Similar Rayleigh Gans” equation has been proposed for
backscatter cross-section of ice aggregates observed by radar

- Far less computationally costly than DDA
- The effects of shape and mass on backscattering are cleanly separated
- Could also be applied to light scattering by some aerosol aggregates

New equation predicts much higher 94-GHz backscatter for D > A
than the “soft spheroid” model, which only works for D < A

- Use of soft spheroids in 94-GHz radar retrievals can lead to factor 3-5
error in IWC and snowfall rate in thick cloud and snow

Remaining uncertainties in ice/snow retrievals

- Mass-size relationship: riming increases density but EarthCARE's
Doppler will help

- Aspect ratio: difference between 0.6 and 0.45 around the same as
difference between soft-spheroids and realistic particles

- Fallspeed relationship: improved with Heymsfield & Westbrook (2010)
Aggregate structure exhibits a power law with a slope of -5/3: why?

Hogan and Westbrook (JAS 2014, in press)
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