The Unknowns of the Radiative Forcing of Doubling CO₂

Yi Huang, Minghong Zhang, Maziar Bani Shahabadi Department of Atmospheric and Oceanic Sciences McGill University

> Paper #: J7.4 AMS 14th Radiation Conference Boston, 2014-07-08

Radiative feedback analysis: breakdown of the ΔR budget

Analysis of radiative feedbacks essentially decomposes the change in radiation energy budget: $\Delta R_{total} = F + \Sigma(\Delta R_X) + Res$

 $\begin{array}{l} \Delta R_{total} : \text{change in net radiation;} \\ \text{F: radiative forcing} \\ \Delta R_{\chi} : \text{partial contributions, i.e., feedbacks} \\ \Delta R_{\chi} = (dR/dX) \ \Delta X : \text{kernel method [Soden et al. 2008]} \end{array}$

Radiative feedback analysis: unclosed radiation budget

The radiation budget is NOT closed – considerable residual not explained in the decomposition of $\Delta R!$

- $\Delta R_x e.g.$, stratospheric feedback? [Huang 2013; Huang et al. under review]
- F instantaneous forcing + rapid adjustments [focus here!]

Radiative forcing

- Radiative forcing (RF)
 - Instantaneous RF
 - Stratospherically adjusted RF
 - Stratopsherically+tropospherically adjusted
 RF ("effective RF" in AR5)
- F_{ins} ~ log₂(CO₂) [IPCC 1990, ...]
 - Q1: Why logarithmic?

[Huang and Bani Shahabadi, J. Atm. Sci., under review]

Logarithmic relationship

- Log relationship can be verified with any RT model
- Log estimation formula widely adopted
 - $F = F_0 \log(q/q_0)$

[IPCC AR1,2,3,...; Wikipedia, ...]

Cause of logarithmic relationship Answer 1: it is due to spectroscopy

Radiative forcing ∝ increased absorption ∝ saturation from line center to wing: "curve of growth" theorem [Goody&Yung 1989]; from band center to wing [Pierrehumbert 2010]

The log relationship applies to spectrally integrated (broadband) radiation flux.

Counterevidence: Logarithmic relationship holds even for monochromatic radiance!

Truth: $\Delta R(8x) = R(8x) - R(1x)$ Calculated using LBL RT model

```
Log scaling:

\Delta R(8x) = \Delta R(1.1x) * \log(8)/\log(1.1)
```

Linear scaling: $\Delta R(8x) = \Delta R(1.1x) * (8-1)/0.1$

- Log-scaling well reproduces radiance change
- Log dependence holds for CO₂ as well as H₂O forcing

Cause of logarithmic relationship Answer 2: it is due to radiative transfer

• Can a 1-layer model explain it?

OLR = $B_1^*(1-\varepsilon) + B_2^*\varepsilon$ Here emissivity: $\varepsilon = 1 - \exp(-\tau)$; optical depth: $\tau \propto q$ (absorber amount)

• For a perturbation q' = $\alpha * q$

$$\begin{split} &\Delta \mathsf{R} = \mathsf{K}_{\mathsf{log}}[\mathsf{log}(\alpha) + \mathsf{O}(\mathsf{log}(\alpha)^3)] \\ &\Delta \mathsf{R} = \mathsf{K}_{\mathsf{linear}}[(\alpha - 1) + \mathsf{O}((\alpha - 1)^2)] \\ &\mathsf{Here}\;\mathsf{K}\;\mathsf{is\;sensitivity\;kernel,\;calculated\;using} \\ &\mathsf{small\;perturbation.} \end{split}$$

Log-scaling yields more accurate estimation than linear-scaling when perturbation (α) is big.

However, accuracy is limited $O(\log(\alpha)^3)$] Fractional error > 100% if α is large (e.g. 8x).

Emission layer displacement model

Solution to non-scattering R.T. Eq. can be generalized as: $R = \Sigma \{W_i^*B_i\}$

 W_i : weighting function for layer i, a function of optical depth τ measured from TOA to layer i.

B_i: Planck function of layer tempreature (T_i)

Emission layer displacement model

Solution to non-scattering R.T. Eq. can be generalized as: $R = \Sigma \{W_i^*B_i\}$

Perturbation of absorber amount $(\alpha \times q)$ equivalently displaces all the contributing layers to higher altitudes.

As W = W(τ) and $\tau \propto q$, each emission layer is displaced from τ to $\tau' = \tau/\alpha$.

Given $T=T_0-z*\Gamma$, it can be shown B $\propto \log(\tau)$, and thus B(τ')-B(τ) $\propto \log(\alpha)$

[Huang and Bani Shahabadi, J. Atm. Sci., under review]

Emission layer displacement model

Solution to non-scattering R.T. Eq. can be generalized as: $R = \Sigma \{W_i^*B_i\}$

Perturbation of absorber amount $(\alpha \times q)$ equivalently displaces all the contributing layers to higher altitudes.

As W = W(τ) and $\tau \propto q$, each emission layer is displaced from τ to $\tau' = \tau/\alpha$.

Given $T=T_0-z*\Gamma$, it can be shown B $\propto \log(\tau)$, and thus B(τ')-B(τ) $\propto \log(\alpha)$

[Huang and Bani Shahabadi, J. Atm. Sci., under review]

Q2: How many W m⁻² exactly? $F = \frac{1}{P_0} \log(q/q_0)$

- F varies geographically because F is atmosphere dependent!
 - =>
- F may differ among climate models (e.g., CMIP) even if the CO₂ perturbation is prescribed identically in these models.

Estimate F

A new method [Huang 2013;
 Zhang&Huang 2014]:

1) Obtain clear-sky forcing based on ΔR breakdown:

 $F^{C} = \Delta R^{C} - \Sigma (\Delta R^{C}_{X})$

Here we use kernels for noncloud feedbacks ΔR_X^c (T and w.v.) $\Delta R_x = (\partial R / \partial X) dX;$

2) Obtain all-sky forcing using cloud-forcing scaling :

 $(F^{C}-F)/F^{c}_{ref} = (0.16/1.16)*(CF/CF_{ref})$

CF: cloud forcing: R^C-R

Impact of forcing uncertainty: Contribution to temperature projection uncertainty

 $\Delta R = F + \lambda * \Delta T_S \Longrightarrow$ error budget of ΔT_S :

=> Forcing uncertainty accounts for about 1/4 of the inter-model spread in surface warming projection. (Zhang&Huang 2014, in agreement with Geoffrey et al. 2012 and Webb et al. 2012)

Nonuniform forcing => more poleward energy transport

[Huang&Zhang, GRL, 2014]

- Net radiation: surplus at equator, deficit at poles.
- PET required for balancing energy budget in each latitude band.
- Radiative forcing of GHG deepens latitudinal radiation imbalance and thus requires more PET.
- It is forcing, rather than feedback [Zelinka&Hartmann 2012], that deepens latitudinal gradient of net radiation and demands more PET.

Summary

- Logarithmic relationship between radiative forcing (F) and gas absorber concentration
 - Holds for monochromatic radiance (not only broadband flux)
 - Results from radiative transfer (not only spectroscopy)
- F is atmosphere-dependent
 - Model- and region-dependent F can be estimated using a cloud forcing scaling method
 - Forcing uncertainty contributes to projection discrepancy
 - Forcing peaks in Tropics => demands an increase in poleward energy transport

<u>References</u>

- <u>Y. Huang</u>, and **M. Bani Shahabadi**, (2014), Why logarithmic? Journal Atmos. Sci., under review.
- <u>Y. Huang</u>, **M. Zhang**, **Y. Xia**, Y. Hu and S. Son, (2014), Is there a stratospheric radiative feedback in climate models? Climate Dynamics, under review.
- <u>Huang, Y.</u> and **M. Zhang**, (2014), The implication of radiative forcing and feedback for poleward energy transport, Geophy. Res. Lett., doi: 10.1002/2013GL059079.
- Zhang, M. and Y. Huang, (2014), Radiative forcing of quadrupling CO₂. J. Climate, 27, 2496–2508. doi: http://dx.doi.org/10.1175/JCLI-D-13-00535.1
- <u>Huang, Y.</u>, (2013), On the longwave climate feedback. J. Climate, 26, 7603–7610, doi:10.1175/JCLI-D-13-00025.1.