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Radiative feedback analysis: breakdown of the AR budget
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Analysis of radiative feedbacks essentially decomposes the change in radiation
energy budget: AR, = F + Z(AR,) + Res

AR,..,;: change in net radiation;

F: radiative forcing

AR,: partial contributions, i.e., feedbacks

AR, = (dR/dX) AX : kernel method [Soden et al. 2008]



Radiative feedback analysis: unclosed radiation budget

AOLR budget
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Total  Forcing Feedback Res
AR, = F + Z(AR,) + Res

The radiation budget is NOT closed — considerable residual not explained in the
decomposition of AR!

* AR, —e.g., stratospheric feedback? [Huang 2013; Huang et al. under review]
 F—instantaneous forcing + rapid adjustments [focus here!]



Radiative forcing

e Radiative forcing (RF)
— Instantaneous RF
— Stratospherically adjusted RF
— Stratopsherically+tropospherically adjusted
RF ("effective RF” in AR5)

A |Og2(COz) [IPCC 1990, ...]
- Q1: Why logarithmic?
[Huang and Bani Shahabadi, J. Atm. Sci., under review]

- Q2:F,_.=4W m?2?, exactly?

INS

[Zhang and Huang, J. Clim., 2014]



dOLR

Logarithmic relationship
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* Log relationship can be verified with any RT model
* Log estimation formula widely adopted

- F=F, log(a/q,)
[IPCC AR1,2,3,...; Wikipedia, ...]



Cause of logarithmic relationship
Answer 1: it is due to spectroscopy

Saturation of an absorption line
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Radiative forcing o< increased absorption
o< saturation from line center to wing: “curve
of growth” theorem [Goody&Yung 1989];
from band center to wing [Pierrehumbert 2010]

-

Saturation of an absorption band
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Wavelength (microns)

The log relationship
applies to spectrally
integrated (broadband)
radiation flux.



Radiance unit

Counterevidence: Logarithmic relationship holds
even for monochromatic radiance!
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Cause of logarithmic relationship
Answer 2: it is due to radiative transfer
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 (Cana 1-layer model explain it?

OLR = B,*(1-¢) + B,*¢
Here emissivity: e=1-exp(—Tt);
optical depth: to<q (absorber amount)

 Foraperturbationqg’=a *q

AR = K, [log(a) + O(log(a)?)]

AR =K, .., [(a—1) + O((a—1)?)]

Here K is sensitivity kernel, calculated using
small perturbation.

Log-scaling yields more accurate
estimation than linear-scaling when
perturbation (a) is big.

However, accuracy is limited O(log(a.)?)]
Fractional error > 100% if a is large (e.g.
8x).
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Example: Radiance at 300 cm™ —orig
W calculated using LBLRTM and a
standard profile
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Solution to non-scattering
R.T. Eq. can be generalized as:
R=3{W*B}

W.: weighting function for layer i,
a function of optical depth t
measured from TOA to layer i.

B.: Planck function of layer
tempreature (T,)
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Example: Radiance at 300 cm™

* Emission layer displacement
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Solution to non-scattering
R.T. Eq. can be generalized as:
R=3{W*B}

Perturbation of absorber amount
(o x g) equivalently displaces all
the contributing layers to higher
altitudes.

As W = W(t) and Tto<q, each
emission layer is displaced from t
tot =T/0.

Given T=T,-z*I, it can be shown
B o< log(t), and thus
B(t’ )-B(t) =< log(c)

[Huang and Bani Shahabadi, J.
Atm. Sci., under review]
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Example: Radiance at 300 cm™

* Emission layer displacement
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Solution to non-scattering
R.T. Eq. can be generalized as:
R=3{W*B}

Perturbation of absorber amount
(o x g) equivalently displaces all
the contributing layers to higher
altitudes.

As W = W(t) and Tto<q, each
emission layer is displaced from t
tot =T/0.

Given T=T,-z*I, it can be shown
B o< log(t), and thus
B(t’ )-B(t) =< log(c)

[Huang and Bani Shahabadi, J.
Atm. Sci., under review]



Q2: How many W m2 exactly? F= Po log(a/qy)

F(4xCO,) computed

60N -

using a RT model
30N and global atmos.
0 Profiles.
30S 1 CO, is uniformly
60S - increased from 190
I to 760 ppm
globally.

0 60E 120E 180 120W 60W 0

* Fvaries geographically because F is atmosphere
dependent!
=>
* F may differ among climate models (e.g., CMIP) even if
the CO, perturbation is prescribed identically in these
models.



Estimate F

Difference between all-sky and clear- ) Ahnew&method [Huar'1g 2013;
sky forcmg Zhang&Huang 2014]:

1) Obtain clear-sky forcing based
on AR breakdown:

FC= ARC - Z(ARS,)

D L O =~ N w b

Here we use kernels for non-

cloud feedbacks AR, (T and w.v.)
0  60E 120E 180 120W 60W 0 AR, = (3R/3X)dX;

Cloud radiative forcing: difference between
aII sky and clear- sky OLR

2) Obtain all-sky forcing using
cloud-forcing scaling :

(FE-F)/Fe
CI:ref)

= (0.16/1.16)*(CF/

ref =

CF: cloud forcing: R®-R

0 60E 120E 180 120W 60W 0



Impact of forcing uncertainty:
Contribution to temperature projection uncertainty

AR =F + A *¥AT¢=>  error budget of AT :

O(AR-F) oA
O(AT) = 75 — <ATS>m7
1.0K 1.3 K

O(AR) ~ O(F) ~ 0.5K

=> Forcing uncertainty accounts for about 1/4 of the

inter-model spread in surface warming projection.

(Zhang&Huang 2014, in agreement with Geoffrey et al. 2012 and
Webb et al. 2012)



Nonuniform forcing => more poleward energy transport
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[Huang&Zhang, GRL, 2014]

Net radiation: surplus at equator,
deficit at poles.

PET required for balancing energy
budget in each latitude band.

Radiative forcing of GHG deepens
latitudinal radiation imbalance
and thus requires more PET.

It is forcing, rather than feedback
[Zelinka&Hartmann 2012], that
deepens latitudinal gradient of net
radiation and demands more PET.



Summary

* Logarithmic relationship between radiative forcing (F) and gas absorber
concentration
— Holds for monochromatic radiance (not only broadband flux)
— Results from radiative transfer (not only spectroscopy)

* Fisatmosphere-dependent
— Model- and region-dependent F can be estimated using a cloud
forcing scaling method
— Forcing uncertainty contributes to projection discrepancy
— Forcing peaks in Tropics => demands an increase in poleward energy
transport
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