A-train Observations of Volcanic Cloud-Top Height and Thickness for the 2008 Chaitén Eruption

MONASH University

Andrew T. Prata, Steven T. Siems and Michael J. Manton
School of Mathematics, Monash University, Australia.

. Introduction

Chaitén experienced three major eruptions on 2, 6 and 8 May 2008 (Carn et al., 2009). The ash clouds were long-lived and were subject to long range $(4000 \mathrm{~km})$ transport, putting aircraft at risk. The A-train passed ove the event several times during 2-10 May and captured the synoptic scale movement of the ash clouds. The need for accurate ash detection and high resolution measurements of Volcanic Cloud-Top Height (VCTH) was highlighted by this event.

1. (a) Hyperspectral infrared ash detection

- Natural extension to traditional broadband ash detection algorithms (e.g. Prata et al., 1989b)

1. (b) Ash detection algorithm

- From the available AIRS channels, 12 are selected and averaged to form 4 "ash" channels.

$$
B T_{1}=\sum_{563}^{566} w_{i} T_{i},
$$

$$
B T_{2}=\sum_{802}^{805} w_{i} T_{i},
$$

$B I_{3}=w_{1088} T_{1088}+w_{1092} T_{1092}$ \qquad

- The ash channels are combined to give a single brightness temperature difference, as follows,

$$
\Delta B T_{a}=B T_{1}-B T_{2}+B T_{3}-B T_{4}
$$

- Criteria (1) and (2) must be met before the AIRS pixel is deemed ash affected,

$$
\begin{align*}
\Delta B T_{a} & >\Delta T_{c} \tag{1}\\
B T_{i} & <T_{h}
\end{align*}
$$

(2)
where, $\Delta \mathrm{T}_{\mathrm{c}}$ is a threshold set to eliminate noise and false detections from clear scenes and T_{h} is a threshold set to eliminate false detections due to low elevation dust aerosol over land.

2. Data and methods

AIRS

- Hyperspectral infrared brightness temperature difference algorithm applied to AIRS for ash detection.

CALIOP

- Collocation of CALIOP profile to allow ash detection within 532 nm backscatter profiles.
- Thresholding algorithm used to extract height information at high resolution.

HYSPLIT

- Back trajectories used to verify heights and to estimate initial VCTHs.
- Forward trajectories used to generate a dummy forecast.

3. Results and discussion

- Setting, $\Delta \mathrm{T}_{\mathrm{c}}=2 \mathrm{~K}$ and $\mathrm{T}_{\mathrm{h}}=290 \mathrm{~K}$, was best compromise between false detections and clear ash signal.
- 12 VCTH and thicknesses recorded. Heights ranged from $3.68-16.56 \mathrm{~km}$ with an average height of 7.74 km .
- Thicknesses ranged from $270-670 \mathrm{~m}$ with over 80% of thicknesses being less than 400 m .
- Volcanic ash detected and tracked for 72 h at distances of up to 4000 km from the source.
- Back trajectories allowed determination of volcanic ash when two or more features were present in the vertical but at the same location in the horizontal.
- Initial plume heights of $4,4.5$ and 5 km estimated from back trajectory analysis, were used to create a dummy forecast.
- Dummy forecast agreed well with observations.

3. (a) 5 May 2008 at 15:17 UTC

Top panel: AlRS brightness temperature differences with back trajectories over plotted.
Bottom panel: CALIOP 532 nm backscatter profile with AlRS collocation (black outtines).
3. (b) 5 May 2008 at $18: 29$ UTC

Top pane: : AIRS brightness temperature e differerces with back k trajectories over plottid.
Bottom panel: CALIOP 532 nm backscatter profile with AlRS collocation (black outines).
3. (c) Dummy forecast

4. Conclusions and future work

- Ash detection algorithm is simple, fast and effective.
- AIRS/CALIOP method is able to detect and quantify thin ash layers.
- Back trajectories initialised with CALIOP heights were useful in estimating initial VCTHs.
- Long-lived ash clouds that were transported large distances were likely to have travelled through the mid-troposphere ($4-5 \mathrm{~km}$).
- Intend to apply method to different eruptions (test robustness) and use different meteorological datasets to test sensitivity of HYSPLIT.

```
References
    Carn, S. A.,.J.S. Pallister, L.Lara, J. W. Ewer, S. Watt, A. J. Prata, R. J.T.Thomas, and G. Villarosa (2009), The
```


