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nrecipitation processes.

radiometer and ceillometer.

The vertical distribution of liquid water content (LWC) within a cloud Is often
assumed to follow an adiabatic increase with height. From observations it is
Known that in many cases show a sub-adiabatic behavior, due to entrainment or

n this study, we take long-term ground-based cloud observations In the
framework of the Cloudnet program (lllingworth et al., 2007) to assess the
adiabaticity of liquid water clouds, using a combination of cloud radar, microwave

The detailed and continuous observation
of microphysical cloud properties remains
a challenging task. Within the last
decade, the (ground-based remote
sensing Instrumentation  for  cloud
observation strongly improved. A set of
similar instruments to perform this task
became available at several places
throughout Europe. Therefore, a common
standard to derive cloud properties was s
developed within the CloudNet program jeiramentation at

(Illingworth et al. 2007). 51.35 °N, 12.43°E
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(Fig. 2).
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Fig. 1. LACROS observatory at TROPOS in Leipzig

Since August 2011, all the instruments which are needed to apply the algorithms have
been operating within the LACROS site in Leipzig (Fig. 1). For the present study, 664
days of observations were evaluated and all periods with pure liquid clouds were used
(137766 periods of 30 seconds, I.e. around 8 % of the total measurement time).

The knowledge about the microphysical properties of clouds is crucial for the

understanding of radiative effects,

By ground-based remote sensing,

like indirect aerosol effects.

the liquid water path (LWP) can be derived,

which is the vertical integral of the liquid water content (LWC) over the

atmospheric column:

LWP = JLWC(Z)dZ

4
LWC = §anjn(r)r3dr

The liquid water content depends on the 3" moment of the drop size distribution.

The challenge to retrieve cloud liquid water content (LWC) from ground-based
remote sensing observations lies in the non-linear relationship between the
radar reflectivity Z and the LWC. Since the drop size distribution is not known,
the LWC cannot be directly inferred.

Cloud radars give a good view of the vertical cloud structure, but the
guantitative information on the LWC is limited. Passive microwave radiometers
(MWR) can determine the integrated liquid water (LWP) with a high accuracy,
but cannot give the vertical distribution of LWC. However, knowing the

temperature and humidity profiles

as well as the cloud boundaries, an adiabatic

cloud liquid water profile following Brenguier (1991) can be derived. This
adiabatic LWC can then be scaled with the LWP observed by a microwave
radiometer to determine the subadiabatic factor (adiabaticity) f_.

The liguid water content can then be written as: LWC(z) = f,q[ 42

It 1Is known that real clouds are

often subadiabatic because of entrainment

processes and non-adiabatic layers. However, in many satellite-derived cloud
products, adiabatic LWC or a constant sub adiabatic factor are assumed. To
assess the influence of atmospheric conditions on adiabaticity, this study has
been performed using Cloudnet data.
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Fig. 3: adiabatic LWP vs scaled (measured)
LWP  for whole dataset from LACROS
observations.

| Note the overestimation of LWP by
- adiabatic assumption.
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It turns out that especially in cases with thicker clouds, the adiabatic LWC was
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M) | In turn, the cloud temperature has
AN | only little effect, neither does the

N | temperature gradient or the
vertical velocity within the cloud.
(Fig. 5 and 6)
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Fig. 6 (right): Mean adiabaticity (in colors) as
TAN | a function of different atmospheric quantities.
ST AN | Mean values are valid for the respective bin.
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It has to be taken into account
A o et eietus i seeeER et e that the CloudNet algorithm has
' | problems to detect the properties
| of shallow clouds with smalll
droplets accurately. (Fig 7,8)

Fig. 7 (left): Fraction of clouds with detected
vertical velocity
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« Deeper clouds tend to have a lower adiabaticity and also for very low cloud base heights, the LWC is
largely overestimated by the adiabatic approach. Adiabatic assumption is best for shallow clouds.

« Sub-adiabatic LWC is relatively frequent, but satellite and ground-based retrievals often use an

adiabatic cloud model for LWC calculations

« Case-studies of satellite comparisons show similar results

Comparison with modified adiabatic approaches
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7 g 2011 too high compared to the observed (Fig. 3). Even if only one-layer clouds are
12 | | T I I . . . . c - c S e -
11 [Taret classification ] neects taken into account, the overestimation of the LWC is still significant (Fig. 4).
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