

Usage of differential absorption method in the thermal IR: a case study of quick estimate of clear-sky column water vapor

Xiuhong Chen and Xianglei Huang

Dept. of Atmos., Oceanic, and Space Sciences, University of Michigan

Acknowledgements: NASA CLARREO program

July 07, 2014 AMS 2014, Boston MA

Outline

- Motivation: the differential absorption method – UV and Visible
 - Thermal-IR?
- Algorithm
- Validations
- Conclusions

Motivation: the differential absorption method

Example 1: The Differential Optical Absorption Spectroscopy (DOAS) instrumentation, visible and UV

Example 2: Dobson spectrophotometer for ozone concentration, **UV**

Main point: double pairs of wavelengths are used to remove slowing varying component while retaining rapidly varying component

Motivation: the differential absorption method

Can we apply the concept to **thermal IR**? A case study: clear-sky total column water vapor (CWV) retrieval from AIRS radiance

Flowchart for clear-sky CWV retrieval from AIRS radiance

Datasets and model for training

- 6-hourly ECMWF ERA-Interim reanalysis
 Four months (Jan., Apr., Jul., Oct.) in 2005
- PCRTM (principal-component based radiative transfer model, Liu et al., 2006)

Datasets for validations

- 6-hourly ECMWF ERA-Interim reanalysis (diff. from the training data set)
 Four months (Jan., Apr., Jul., Oct.) in 2008
- Thermodynamic Initial Guess Retrieval (TIGR2000 v1.2) measured by real raidosondes, 1968-1989
- AIRS L2 cloud-cleared radiance in year of 2004
- AIRS L2 H₂O retrievals : accuracy ±10% , RMS 20-35%

Information on the selected AIRS channels

ID	Channels (cm ⁻¹)	Peak of weighting function	Major absorption features	Surro	gates
Α	812.531	surface	H ₂ O continuum	DDR	
В	814.029	80hPa above surface	H ₂ O weak line and continuum		
С	827.747	80hPa above surface	H ₂ O weak line and continuum		
D	829.299	surface	H ₂ O continuum		
E	963.836	surface	H ₂ O continuum	$\mathrm{BT}_{963.8}$ for T_{s}	ΔBT _{963.8-748.6}
F	748.6	753.6 hPa	CO ₂		lapse rate

Composites of log(CWV) as functions of DDR and $BT_{963.8}$ (proxy of T_s)

Scatter plot of log(CWV) w.r.t. $\Delta BT_{963.8-748.6}$ (proxy of lapse rate)

Look-up-table

- Composites of CWV w.r.t. DDR, BT_{963.8}, ΔBT_{963.8-748.6}
- Ocean and land respectively
- Denoted as CWV_{LUT} in following plots/validations

Validation I

Validation II

Validation II: CWV_{LUT} from real AIRSL2 cloud-cleared radiances **VS.** CWV_{AIRS}

- Differential absorption method is extended to the thermal-IR.
- CWV can be quickly estimated from look-up tables.
- □ The method is tested using multiple data sets. The mean bias is within ±0.07cm and the RMS fractional error is ~33%.
- It could be used as a first guess for other more sophisticated retrieval algorithms for CWV, or quick estimation of CWV for scene type classifications.
- X. H. Chen and X. L. Huang. Usage of differential absorption method in the thermal IR: a case study of quick estimate of clear-sky column water vapor. JQSRT, 140,99-106, 2014.

Thank you for attention !

Jan 2005

Apr 2005

Blue dots 298K<BT<300K 0.02<DDR<0.02025 Wm⁻²/sr/cm⁻¹

Red dots 288K<BT<290K 0.01<DDR<0.01025 Wm⁻²/sr/cm⁻¹