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Shortwave surface radiation budgeting network for spatio-temporal observation of cloud
Inhomogeneity fields
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Overview Details of experiment & data quality control i
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Clouds and precipitation are formed by complex non-linear processes that are least Screening procedure .
understood and is arguably the foremost problem to be addressed for improving the climate Data from the pyranometer network can possibly be influenced by  #

prediction. The German initiative "High Definition Clouds and Precipitation for advancing g B HOPE-Juelich campaign various factors which may be either observable or non-observable ™ *.
Climate Prediction” - HD(CP)? conception involve modules focused on modeling, g E: (April — July, 2013) many a times. So, we adopt a two way quality checking of the = .~
observations and synthesis was a major step towards advancing our understanding on this | radiation measurements viz., by observations and statistical =« =~
problem. The observational module (O) is aimed at proving specific data products capturing Spatial domain: 10 x 12 km? (99 stations) screening. :'
the spatio-temporal variability of water vapour, temperature, and cloud and precipitation S LT
properties. The four sub-modules include: Ol (Supersites), O2 (Full domain), O3 5 Dataselts: Observable factors: tilt/level imbalance, cleanliness of the ° °
(Integration) and O4 (Prototype Experiment). The project O4 "HD(CP)? Prototype e Shortwave downwelling irradiance at surface pyranometer glass dome, and calibration uncertainty. Tt
Experiment" (HOPE) was designed to provide critical model evaluation at the scale of model - (in W m-?; Model: EKO ML-020VM) ..
simulation and further provide information on sub-grid scale variability and microphysical g Sensitivity range: 6.3 - 7.7 pV/Wm?=2 Non-observable factors: instrument malfunctioning, resting of .
properties that are subject to parameterizations even at high resolution simulations. In “ birds, movement of insects, possible water condensation on/in the

HOPE measurements, five work packages focused on land-surface exchange processes | e relative humidity (RH; Model: DKRF 4001-P) glass dome, and background shadowing.

(WP1), planetary boundary layer studies (WP2), aerosol and cloud microphysics (WP3), Range: 0 ... 100 % RH

cloud morphology (WP4) and radiative closure studies (WP5). The present work is part of

WP5 with the following goals:

- To observe the spatio-temporal variability of cloud induced downwelling shortwave fluxes y

at the surface using ground based autonomous pyranometers (~ 100 nos.) equipped with <)
rd
[

The observable factors are mostly nullified by our observations
® air temperature (in K; Model: DKRF 4001-P) during the battery replacement every week, where the data flags
iggggc-?OJr-/-_- 530d269-c C@ 25 den. were assigned to the entire previous week data of each

Y- 4 deg. ©d. corresponding station. We adopt a statistical screening to identify

micro-sensors of relative humidity and air temperature during HOPE campaign. 2 SR e Nk Temporal resolution: the stations which are malfunctioning. In this approch, we classify
- Use 3D Monte-Carlo radiative transfer code, MC-UNIK (Macke et al., 1999) to close the 8.35 8.39 s BT il X A 10 Hz observations averaged to 1 Hz data each data point as good, suspected outlier and outlier. If a
radiative flux measurements from other collocated ground based observations or LES model par_ticular station (_jata for the entire day has OIS than 50% data
simulations and further quantify the effect of cloud inhomogeneity on cloud radiative forcing  Figure 1: Pyranometer network during HOPE-Juelich campaign (left side). Each falling unde_r outher catgogory, th_en we consider that stat|on_ as
(Scheirer and Macke, 2003). yellow circle represents a pyranometer station in the field (right side). malfunctioning. The quality screening of data from meteorological

sensors completely rely on the above statistical screening.

Spatial and temporal observations

Atmospheric Transmittance (T} Date & Time: 25/04/2013 12:48:00 T _ _ _ Comparison of pyranometer network observations with MSG / SEVIRI high resolution channel TOA reflectances
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& N 20 obser ‘;a ! ons; i‘_/a' aC ela . 06 2 observations from pyranometer network
i _imlL ] 10 'S,:C;Z;e:::?hu '(;n't. ,(: orbar “é during HOPE-Juelich campaign corresponding
] ’ - - -
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~ -2 0 2 4 6 8 10 12 . O
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= surface irradiance measurements are shown in
3 6.4°E 6.5°E 0.3 (b) and (c) for spatial comparison.
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e Multi-scale analysis of high density surface radiation fields to understand the optimal spatial and temporal

_ _ T o Macke, A., D. L. Mitchell, and L. V. Bremen, 1999: Monte Carlo radiative transfer
resolutions for studying the cloud radiative effects Is in progress.

"N
. ‘.'j - @ Large spatial and temporal variability in cloud induced surface radiation fields is observed.
» calculations for inhomogeneous mixed phase clouds. Phys. Chem. Earth, 24B, 237-

e Spatial correlation of atmospheric transmisttance as a function of distance between different reference

':g"h; stations indicates that the cloud induced radiation at different time stamps is well captured . ® Spatio-temporal analysis between the cloud induced radiation fields obtained from the pyranometer 241
¥ ¥ . ) . . . . .
‘?,‘..; e Spatial anti-correlation of spatial PDFs between the shortwave downwelling irradiance and TOA network and METEOSAT SEVIRI satellite Images of top of thosphere high resolution broadband channel
:__:.‘3‘ reflectance supports that lower the TOA reflectance, stronger is the cloud induced shortwave forcing or EOC4| ] 1dl %m) rgﬂec;t-ar;cesﬂfor tTe samet dgmaln.t%f&l?(armltéon. ¢ q o § ifving the effect of Scheirer, R. and A. Macke (2003): Cloud-inhomogeneity and broadband solar
<2 $4 transmittance at the surface. : oud induced radiative fiux clostre studies wi ] as forward operator for quantifying the effect o fluxes, Journal of Geophysical Research, 108(D19), doi:10.1029/2002JD003321
Sraels . Cloud inhomogeneity on cloud radiation budget. | -
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