1. Motivation

1. How do the microphysical processes in a supercell thunderstorm change across

the range of aerosol concentrations observed in our atmosphere?

2. How do aerosol-induced changes in the microphysical processes affect the cold
pool and the spatial distribution of precipitation?

3. Do these changes increase monotonically with increases in aerosol
concentration, or are there nonlinear effects?

2. Atmospheric Aerosol Concentration:
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Above: Observations from the Southern Great Plains
(Lamont, OK)

1. Tremendous variation in CCN concentration:
100 cm=3-15 000 cm3

2. Peak concentration is smaller on thunderstorm days:
9000 cm3

3. We therefore test 15 different CCN concentrations:
100 - 10 000 cm3

3. Configuration of the Weather Research and

Forecasting (WRF) Model
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shown below. Different soundings (low relative
humidity, loRH; high relative humidity, hiRH; and high
vertical wind shear, hiWs) are also tested (section 7).
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4. Results: Aerosol Effect on Cloud Microphysics

A. Changes in hydrometeor B. Changes in microphysical process rates: Polluted vs. clean
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numerous cloud droplets and
larger, more sparse rain and hail
particles.
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5. Results: Aerosol Effect on th
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At larger CCN concentrations, evaporation and melting are
reduced. Riming of hail with cloud droplets is increased.
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CCN = 1500 cm?3, the cold pool weakens.
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6. Results:
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Above: In the most polluted run, accumulated
precipitation along the left- and right-moving updraft
tracks is up to 24 mm larger.
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Right: The domain-averaged precipitation is strongly -—
correlated with the cold pool characteristics (size: R? = 640 620 600 -580  -560
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7. Sensitivity to Initial Environmental Sounding
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8. Conclusions

The dirtiest simulation (CCN = 10 000 cm=3) has smaller, more numerous cloud droplets and larger, less
numerous rain and hail particles than the cleanest simulation (CCN = 100 cm=3).

The size and temperature of the cold pool display non-monotonic responses to changes in the CCN
concentration, with maxima in cold pool area and temperature deficit at CCN = 750 cm-3 and
CCN = 1500 cm3, respectively.

Compared to the cleanest run, precipitation is increased (by up to 24 mm) along the tracks of the left- and
right-moving updrafts in the most polluted run. In addition, the track of the right-mover has shifted to the
northeast.

The magnitude of the aerosol effect is sensitive to the initial sounding, especially with respect to the low-level
relative humidity.
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