Mixed Layer Model and Large Eddy Simulations of Stratocumulus Cloud Dissipation over the Coast

Mohamed S. Ghonima ${ }^{1}$, Jan Kleissl ${ }^{1}$ and Thijs Heus ${ }^{2}$
${ }^{1}$ Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411.
${ }^{2}$ Institute for Geophysics and Meteorology, University of Cologne, Pohligstr. 3, 50969, Cologne, Germany

Introduction

Marine layer stratocumulus (MLS) is a common type of cloud found in many coastal regions. The breakup of such clouds once they move inland is hard to predict in numerical weather prediction (NWP) models.

- NWPs such as WRF, NAM and ECMWF, systematically under-predict cloud cover in North America and Europe when compared to satellite.
- The optically thick MLS clouds attenuate solar radiation significantly. Due to the high concentration of rooftop PV panels near the coast in California accurate prediction of MLS breakup is essential for the integration of solar power generation onto the electric grid.
- In order to better understand the different physical processes affecting MLS cloud dissipation over land, two tools are employed in this study:

1. Large eddy simulations (LES

2. Mixed layer model (MLM)

Large Eddy Simulations

Clouds dissipate within 4-5 hours after sunrise, which matches the dissipation times observed via satellites.

Figure 1: Stratocumulus cloud deck off the coast of California, captured by NASA's MODIS Terra satellite on April 142013.

- Surface sensible heat flux warmed the boundary layer which caused the clouds to evaporate
- At night, the turbulence was generated by longwave cooling in the cloud layer while during the day, the turbulence was mainly generated by the surface flux.

Figure 2: Vertical profile of a) liquid water potential temperature, b) total water mixing Figure 2: Vertical profile of a) liquid water potential temperature, b) total water mixing
ratio, c) total liquid water mixing ratio, d) total kinetic energy plotted as a function of time, for a stratocumulus topped boundary layer over an interactive land surface. Solid lines represent the cloud base and top heights.

Acknowledgements

The authors would like to thank the CPUC California Solar Initiative RD\&D program for funding.
Cloud thickness tendency is expressed as:

$\frac{\partial h}{\partial t}=$	$\frac{\partial z_{i}}{\partial t}-\frac{\partial z_{b}}{\partial t}$
$\frac{\partial z_{i}}{\partial t}$	$=w_{e}+w_{s}=0$
$\frac{\partial z_{b}}{\partial t}=$	$\frac{c_{\mathrm{p}} \Pi_{1}}{z_{i} g}\left(1-\frac{c_{p} R_{v} T_{c b}}{R_{d} L_{v}}\right)^{-1}\left(w_{e} \Delta \theta_{l}+S H F-\frac{1}{c_{p} \rho} \Delta F_{r a d}\right)$
	$+\frac{g q_{T}}{z_{i} R_{d} T_{c b}}\left(1-\frac{L_{v} R_{d}}{c_{p} R_{v} T_{c b}}\right)\left(w_{e} \Delta q_{T}+L H F\right)$
$\frac{\text { MLM overview }}{\text { Stand -alone model }}$	

> Entrainment parameterized as a function of buoyancy flux

Surface flux parameterized as a function of Bowen ratio and net

surface radiation	
Variables	
$z_{i}, z_{b}, h: c l o u d ~ t o p ~ a n d ~ b a s e ~ h e i g h t ~$ and thickness	SHF,LHF: sensible and latent heat flux
$\theta_{l}:$ liquid potential temperature	$q_{T}, \mathrm{q}_{1}:$ total water and liquid mixing ratio
$T K E:$ Turbulent Kinetic Energy	$\beta:$ Bowen ratio
$F_{\text {rad }}:$ net radiation	$w_{e}:$ entrainment velocity

Figure 4: Effects of the different physical processes on the rate of change of cloud base height.

Figure 5: Feedback loops in the MLM. Solid lines denote positive effect, and dashed denote negative effect

- Stratocumulus dissipation times simulated by the LES and MLM matched reasonably well.
- Sensible heat flux and cloud-top entrainment were the dominant factors controlling the cloud decay at high Bowen ratios
- At high Bowen ratios, the stratocumulus topped boundary layer system was found to be unstable and the cloud deck
dissipates in a matter of hours after sunrise
- As Bowen ratio decreases, the cloud lifetime increases and the stratocumulus topped boundary layer becomes more stable.

