Retrievals of the deep convective system ice cloud microphysical properties using the ARM radar and aircraft in-situ measurements

Jingjing Tian, Xiquan Dong, Baike Xi and Jingyu Wang, University of North Dakota Scott Giangrande and Tami Toto, DOE BNL; Pat Minnis and Mandy Khaiyer, NASA LaRC

Motivation **Discrete Dipole Approximation (DDA) dataset Provide the backscatter cross section information** KAZR: $\sigma - D$ AND 20. 35
Image: Provide state stat Bullet rosette o-D relationship was parameterized based on DDA scattering database and used to best estimate aggregate backscatter cross section information. **Retrieval Algorithm** The radar reflectivity factor for ice particles Z_i **Adjusted KAZR** $Z_i = \frac{1}{\pi^5 |K_i|^2},$ $\sigma(D)N(D)dD$ - leg1 - leg2 σ: Backscattering cross section for ice habits N(D): particle size distribution (PSD) aircraft track NEXRAD $Z_e = \frac{1}{\pi^5 |K_w|^2} \,,$ $\sigma(D)N(D)dD \iff \rightarrow$ E-W distance from SGP site (km $Z_{e} = f(N_{0}, \mu, \lambda, s, t) \leftarrow$ Adjusted KAZR - NEXRAD $D_{m} = f(Z_{e}, \mu, N_{t}, s, t, p)$ IWC = $f(Z_{e}, \mu, N_{t}, s, t, p, q)$ **Retrievals from KAZR** Time (UTC) **On average, there is 4dB difference** Leq 2 along aircraft track leg1 and leg 2 (a) Reflectivity Leg 2 Leg 1 (b) $\mathbf{D}_{\mathbf{m}}$ (c) IWC Time (UTC 1) The temporal and vertical variations of D_m and IWC in μ used leg1: 4.332 mean: follow the variations of KAZR reflectivity. retrieval: Std_dev: 1.257 2) Particle size and *IWC* decrease with altitude in the top SR: 4.0 leg2: 1.748 mean: few kilometers of the cloud. AC:2.0

1 Accurate representation of convective processes is important for models/ Earth's climate system. But there is a lack in understanding of the detailed cloud microphysical properties [e.g. Median mass diameter (D_m)/ Ice water content (IWC)] of convective systems. $\geq 2_{-}$ Ice layers dominate the DCS radiation budget (Wang et al., 2005; Feng et al., 2012). Accurate vertical distributions and temporal variations of the microphysical properties in these ice layers can be used to improve our climate forecast capability in models. \geq **3.** Adjusted KAZR (λ =8 mm) reflectivity and in-situ measurements were provided during the MC3E, which are the foundation for the development of algorithms. **Adjusted KAZR and NEXRAD reflectivities** Aircraft in-situ measurements (PSD)

author: jingjing.tian@my.und.edu

D _m	D _m	D _m	IWC	IWC	IWC
550	618	808	0.27	0.33	0.57
447	478	696	0.17	0.15	0.33

dB)	Nt (10#/L)	μ
6	6.5%	3.5%
%	10%	8%
ا م		
dB)	Nt (10#/L)	μ
%	5.5%	2%
6	12%	12%