Enhancing Efficiency of the RRTMG Radiation Code with GPU and MIC Approaches for Numerical Weather Prediction Models

Michael J. Iacono¹, David Berthiaume¹, John Michalakes²

(1) Atmospheric and Environmental Research (miacono@aer.com) (2) NOAA – National Centers for Environmental Prediction

RRTMG, Radiative Transfer Model for GCMs

- Accurate calculations of radiative fluxes and cooling rates are key to accurate simulations of climate and weather in GCMs
- Radiative transfer (RT) calculations in GCMs constitute a significant fraction of the model's computations
 - > As much as 30-50% of execution time
- **RRTMG** is an accurate and fast RT code relative to RRTM, LBLRTM and measurements
 - (Iacono et al., JGR, 2008; Mlawer et al., JGR, 1997)
 - ➤ Available at rtweb.aer.com
- RRTMG is used in many dynamical models:
 - ➤ WRF-ARW: LW and SW implemented as physics options in v3.1 in 2009
 - > NCAR CAM5 and CESM1 (LW in 2010, SW in 2010)
 - ➤ NASA GEOS-5 RRTMG to be next operational RT code
- > NCEP GFS (2003,2010), CFS (2004,2010), RUC (2008)
- > ECMWF IFA (2000,2007) and ERA40
- > ECHAM5 (2002)

Computational savings will allow introduction of more sophisticated physics packages elsewhere in WRF.

RRTMG Performance on MIC

- MIC: Intel Many Integrated Core architecture (Xeon Phi processors)
- MIC code modifications in progress at NOAA for NCEP NMM-B and GFS forecast models
- Column, layer and g-point loops reordered for best efficiency on MIC
- Performance comparison of total **elapsed time** (right) for RRTMG_SW on Xeon Sandybridge (8 and 16 cores, light blue), and Xeon Phi (MIC, dark blue), and for RRTMGPU_SW on a GPU (green); all single precision
- Xeon and GPU tested are not latest versions of vendor hardware

Restructuring RRTMG to Run Efficiently on Graphics Processing Units (GPUs)

- In order for every profile to be run in parallel, arrays were padded to be multiples of 32, the size of a warp on a GPU, and reordered so that the fastest changing dimension would coincide with the thread layout to enable efficient memory coalescing.
- Algorithms were restructured so that g-points can be run in parallel, ensuring that even with a relatively low number of profiles, the GPU is always busy and therefore running efficiently.
- Look-up tables were removed and calculations were implemented within the main loop to avoid scattered memory access and enable more efficient execution on the GPU.
- Profile partitioning was implemented using the MPI API and multiple streams for running RRTMG on multiple GPUs in parallel.
- The main loop was restructured so that, instead of running a single profile at a time, the various subroutines for all of the profiles were run in parallel.

RRTMGPU Performance (Off-line)

Test Environment: NCAR Caldera

- **System** Configuration:
 - Compiler: PGI_v13.9 with CUDA Fortran (v5.0) and openACC; single precision used for all tests
 - Caldera CPU: 2.6 GHz Intel Xeon E5-2670 (SandyBridge)
 - Caldera GPU: NVIDIA Tesla M2070-Q, Compute Capability 2.0
- Radiation Configuration:
 - > RRTMGPU_LW/SW running off-line on CPU and GPU
 - ➤ Input data generated for 1250 to 40000 clear and cloudy profiles
- Radiation Timing Performance:

RRTMGPU Performance (WRF)

Test Environment: NCAR Caldera

- **System** Configuration:
 - > Same as off-line tests (see left)
- WRF Configuration: (Two runs: CPU/GPU)
 - ➤ WRF_v3.51 (configured for 1 and 8 CPU processors)
 - ➤ Old Rad: RRTMG_LW_v4.71, RRTMG_SW_v3.7
 - New Rad: RRTMGPU_LW (includes physics changes equal to RRTMG_LW_v4.85), RRTMGPU_SW (same physics as SW in WRF)
- Single CONUS grid, **33750 grid points**, 29 layers, time step: 3 min., radiation time step: 30 min., 1-day forecast: 18Z, 9-10 Jan 2014
- WRF Radiation Timing Performance:

WRF RRTMG_CPU/RRTMGPU Performance Examples on NCAR/Caldera					
WRF/CPU (1 Core; "serial")			WRF/CPU (8 Cores; "dmpar")		
Model	Elapsed Time	Time	Model	Elapsed Time	Time
	(sec)	Fraction vs. WRF		(sec)	Fraction vs. WRF
LW	904.3	0.28	LW	116.6	0.23
SW	643.6	0.20	SW	90.2	0.18
LW+SW	1547.8	0.48	LW+SW	206.8	0.40
WRF	3210.7	1.00	WRF	512.6	1.00
WRF/CPU + RRTMGPU			WRF/CPU + RRTMGPU		
Model	Elapsed Time (sec)	Time Fraction vs. WRF	Model	Elapsed Time (sec)	Time Fraction vs. WRF
LW	70.2	0.04	LW	70.2	0.16
SW	55.4	0.03	SW	55.4	0.13
LW+SW	125.6	0.07	LW+SW	125.6	0.29
WRF	1944.2	1.00	WRF	431.4 (estim.)	1.00
Model CPU/GPU Time Ratio		Model	CPU/GPU Time Ratio		
LW	12.9		LW	1.7	
SW	11.6		SW	1.6	
LW+SW	12.3		LW+SW	1.7	
WRF	1.7		WRF	1.2	

WRF/RRTMGPU Output Verification

- > Small differences in LW fluxes are expected and due to physics changes
- ➤ No impact on SW fluxes from running on GPU (except through LW)

Summary

- RRTMGPU_LW/SW are working both offline and within WRF_v3.51 at NCAR,
- Running the radiation codes on the GPU presently requires the PGI compiler (v13.9), a recent version of CUDA Fortran (e.g. v5.0), openACC, and NVIDIA GPU hardware,
- Results show improved performance of RRTMGPU within WRF and a significant reduction in the fraction of total model time spent on radiative transfer,
- Additional speed-up is possible with further configuration refinement; specific performance improvement is also dependent on the GPU hardware; faster GPUs are available than the NVIDIA Tesla M-2070Q in use in Caldera,
- Separate tests on Xeon Phi (MIC) architecture also show improved performance relative to tests on the GPU and Xeon Sandybridge CPU

Future Work

- Timing improvement reported here is a preliminary result; it is essential to perform consistent comparisons between optimal CPU and GPU environments,
- Dependence of timing improvement on WRF grid size will be quantified,
- Further refinement of GPU application will be completed to determine optimal configuration,
- Version of RRTMGPU in use here is a transitional model; under separate funding (ONR) the radiation codes will be completely redesigned to further enhance their parallel processing capability and generalized application,
- Current RRTMGPU or a later version will be made available to NCAR for application to a future WRF release

 Acknowledgment: This work is supported by the DOE Office of Science

Acknowledgment: This work is supported by the DOE Office of Science Earth System Modeling (ESM) SciDAC Program under grant DE-SC0007038.