Trajectories of Cloud Droplets around a Rain Drop Observed in Mainz Vertical Wind Tunnel

J. Fugal¹,², A. Górska¹,³, S. K. Mitra³, S. P. Malinowski¹,², Miklos Szakall², Nadine von Blohn³, Alexander Jost¹, Stephan Borrmann¹,²

¹ Max Planck Institute for Chemistry, Mainz, Germany
² Institute of Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
³ Institute of Geophysics, University of Warsaw, Warsaw, Poland

Introduction
Collisions are a crucial phenomena to understand aerosol scavenging by rain (Querel et al., 2014) and precipitation formation (Vohl et al., 2007), especially in certain regimes of collisions between cloud droplets themselves and between small rain drops and cloud droplets where there is a lack of data. Our experiment investigates collisions and near-collisions of cloud-droplets with a rain drop by means of in-line holography. Measurements are performed in the Mainz vertical wind tunnel in a laminar flow. We present details of the experimental setup, data processing procedure, as well as first results of selected droplet trajectories.

Experimental setup

- L - laser
- C - camera
-Collector drop diameter: 2.7 m/s
- Relative velocity between droplets and collector drop: 2.7 m/s
- Collector drop diameter: ~675 μm
- Droplets diameters: 20–70 μm
- 4 to 5 point particle trajectories
- ~2 collisions per second
- ~5.5 seconds of data (5500 holograms)

Flow parameters
- Terminal velocity: ~2.9 m/s
- Temperature: ~21.7°C
- Density: 2 droplets/cm³
- Relative velocity between droplets and collector drop: 2.7 m/s
- Collector drop diameter: ~675 μm
- Droplets diameters: 20–70 μm
- 4 to 5 point particle trajectories
- ~2 collisions per second
- ~5.5 seconds of data (5500 holograms)

Flow structures

- Particle size is unbiased and uniform with position in the flow.
- Vertical velocity is laterally uniform in the sample volume.
- Droplet size has a strong correlation with its vertical velocity showing the expected dependence of sedimentation velocity on droplet size (left figure).
- Lateral velocity shows weak correlation with the lateral position (right figure).

Rain drop trajectory and sizes

- Filtered rain drop trajectory showing also the drop velocity by color.
- Rain drop size also shrinks in time, about 10 μm (1 pixel) in 5 seconds. In this case, evaporation is stronger than growth by collision-coalescence.
- Also the minor diameter of a fitted ellipse about the rain drop is rather consistently one pixel or ~10 microns smaller than the major diameter perhaps due to droplet asphericity due to its fall (Szakall et al., 2010).

Conclusions

- Proof of concept that we can observe trajectories of collisions and near-collisions of cloud droplets with rain drops in the Mainz vertical wind tunnel.
- We found 8 collisions so far in 5.5 seconds of data.
- Drop and droplet size, impact parameter, flow characteristics (velocity field) are simultaneously measured.

Future work

- 45 seconds more of the same data set to analyze.
- Automate droplet injection.
- Further automate detection of collision and near-collisions.
- More measurements of different droplets and drops sizes.
- Higher-resolution and higher frame-rate camera to have better resolved tracks.

Acknowledgements

We acknowledge the financial support of the Max Planck Institute for Chemistry for Anna Gorska, and the writers of the HOLOSUITE software which was used to process the holograms.

References


Corresponding author: Robin-Müller-Weg 1, 55128 Mainz, Germany. e-mail: jacob.fugal@mpi.de

14th AMS Conference on Cloud Physics, 7-11 July 2014, Boston, MA, USA