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Tony Slingo on Climate Research, 1989 

One of Tony's concerns is that current 
interest in global climate change might 
backfire if research doesn't progress 
quickly enough.  
 
"Governments want results," he says. 
"Politicians tend not to be interested 
in long-term research. What I think  
Needs doing now is more research, 
but that doesn't buy votes.” 

From	
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  Notes	
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25 Years Later … 



25 Years Later … 



25 Years Later … More urgent, but … 
•  Lack of a climate observing system (vs. weather) 

–  Climate is 10x the variables and 10x the accuracy of weather. 
 

•  Struggles to get sufficient resources for climate modeling 
 

•  Science questions typically qualitative not quantitative 
–  Understand and explore vs rigorous hypothesis testing 
–  Leads to intuitive “Seat of the Pants” requirements 
–  After > 30 years of climate research: time to improve 

•  What is the right amount to invest in climate science? 
–  Requires link of science to economics 
–  Requires thinking outside narrow disciplines 
–  Requires arguing for climate science, not our own science 
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BAMS October, 2013 

A MEASURE

FOR MEASURES

In-Orbit Calibration of 
Climate-Change Monitoring



Accuracy Requirements of the Climate Observing System  

Even a perfect observing system is limited by natural variability 

0.0


1.0


2.0


3.0


4.0


0
 10
 20
 30
 40
 50


Tr
en

d
 A

cc
ur

ac
y 

(%
C

R
F/

d
ec

ad
e,

 9
5%

 C
o

nfi
d

en
ce

)


Length of Observed Trend (Years)


Perfect 

Observing


System


The length of time 
required to detect a 
climate trend caused 
by human activities is 
determined by: 
 
•  Natural variability 

•  The magnitude of 
human driven 
climate change 
 

•  The accuracy of the 
observing system 
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Reflected Solar Accuracy and Climate Trends 
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High accuracy is critical to more rapid understanding of climate change 

Climate Sensitivity Uncertainty  
is a factor of 4 (IPCC, 90% conf)  
which =factor of 16 uncertainty in  
climate change economic impacts 
 
 
Climate Sensitivity Uncertainty = 
Cloud Feedback Uncertainty = 
Low Cloud Feedback =  
Changes in SW CRF/decade 
(y-axis of figure) 
 
Higher Accuracy Observations = 
CLARREO reference intercal of 
CERES = narrowed uncertainty 
15 to 20 years earlier 
 
 

Wielicki et al. 2013, 
Bulletin of the American 
Meteorological Society 
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Calibration Reference Spectrometers (IR/RS)  
for Global Climate, Weather, Land, Ocean satellite instruments 

CLARREO Provides "NIST in Orbit": Transfer Spectrometers to SI Standards 

 
Provide spectral, angle, 
space, and time 
matched orbit crossing  
observations for all leo  
and geo orbits critical 
to support reference 
intercalibration 
 
Endorsed by WMO & 
GSICS (letter to NASA 
HQ) 
 
Calibrate Leo and Geo 
instruments relevant to 
climate sensitivity: 
- JPSS: VIIRS, CrIS, 
CERES 
- METOP: IASI, AVHRR 
- Geostationary imagers/
sounders 
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What is the right amount to invest in climate science? 

 Interdisciplinary Integration of Climate Science and Economics 

Cooke et al., Journal of Environment, Systems, and Decisions, July 2013, 
paper has open and free distribution online. 
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VOI Estimation Method 
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VOI Estimation Method 
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VOI Estimation Method 
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VOI Estimation Method 
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Economics: The Big Picture 
•  World GDP today ~ $70 Trillion US dollars 

•  Net Present Value (NPV) 
– compare a current investment to other investments that could have 

been made with the same resources 

•  Discount rate: 3% 
– 10 years: discount future value by factor of 1.3 
– 25 years: discount future value by factor of 2.1 
– 50 years: discount future value by factor of 4.4  
– 100 years: discount future value by factor of 21 

•  Business as usual climate damages in 2050 to 2100: 0.5% to 
5% of GDP per year depending on climate sensitivity. 

1
9 
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VOI vs. Discount Rate 

Discount Rate!
CLARREO/Improved 

Climate Observations 
VOI (US 2015 dollars, net 

present value)!
2.5%" $17.6 T"
3%" $11.7 T"
5%" $3.1 T"

Run 1000s of economic simulations and then average over  
the full IPCC distribution of possible climate sensitivity 

Even at the highest discount rate, return on investment is very large 

Additional Cost of an advanced climate observing system: 
 ~ $10B/yr worldwide 

Cost for 30 years of such observations is ~ $200 to $250B in NPV 
For a payback ratio of ~ $50 per $1 invested 
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Suggested Directions 
•  Quantitative Science Questions 

– Hypothesis Tests not “improve and explore”, think Higgs Boson 
  

•  Observing System Simulation Experiments (OSSEs) 
–  Improve observing system requirements 
– Move from “base state” to “climate change” climate model tests 
–    

•  Higher Accuracy Observations for Climate Change 
– See BAMS paper for example: broadly applicable 

  

•  Economic Value of Improved Climate Observations and Models 
– See J. Env. Sys. Decisions paper for example: broadly applicable 

  

•  Remember Tony Slingo’s Nature 1990 paper: a very early 
attempt at a climate “OSSE” for clouds and radiation: “Sensitivity 
of the Earth’s radiation budget to changes in low clouds”. 

2
1 
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Backup Slides 

2
2 
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Example Radiation Science Questions 
•  Can we narrow uncertainty in climate sensitivity by a factor of 3 

below that in AR5? 
•  Can we narrow uncertainty in anthropogenic aerosol forcing by a 

factor of 3 below that in AR5? 
•  Can we close the surface energy balance (radiative/latent/

sensible) from the current 15 W/m^2 to 5 W/m^2? 
•  Can we understand short term and long term fluctuations in the 

rate of warming and global heat budget to within 0.1 Wm-2 at 
global annual scales? 

•  Given large arctic changes: are clouds increasing or decreasing 
arctic change rates? (determine within 25% of snow/ice 
feedbacks) 

•  Spectrally verify the Far-Infrared water vapor greenhouse effect 
and water vapor feedback (accuracy consistent with question 1)  

2
3 



Reducing Uncertainty 
•  Climate Science Uncertainty => 

–  Climate Modeling Diagnostics & Hypothesis Tests (e.g. CMIP) 
–  Process Modeling Diagnostics & Hypothesis Tests (CRM, LES) 
–  Model OSSEs for Observation Requirements (rarely done) 
–  Field Experiments Observation Requirements (loosely done) 
–  Satellite Observation Process Retrieval Requirements (well 

done, focus on instantaneous retrieval needs and accuracy/
precision) 

–  Satellite Climate Change Observation Requirements (loosely 
done, ad hoc for calibration, sampling, retrieval algorithms) 

–  Combined Satellite, Surface, In-situ, Aircraft Observation 
Requirements (typically adhoc discussions of what is currently 
available to cobble together) 

–  Shortcomings are all symptoms of the lack of a planned 
rigorous climate observing system and the modeling to 
define its requirements 
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Spectral Decadal Change is Linear 

Instantaneous changes are nonlinear: decadal change is highly linear 

Doubled	
  CO2	
  change	
  of	
  all-­‐sky	
  
Global	
  spectral	
  radiance	
  from	
  
T(z),	
  q(z),	
  CO2,	
  clouds,	
  for	
  the	
  
CFMIP	
  CCCMA	
  coupled	
  climate	
  model	
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2010	
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found	
  for	
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  et	
  al.,	
  2010	
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Let there be light. 


