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Introcluction Virtual aircraft
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3 S 40 e Radiative cooling enables groving of the cloud top and counteracts dilution due to wind shear (see upper panels of firures 3 and [4).
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, o . o e Profiles "collected" by virtual aicraft look alike profiles from real airborne measurements. Fluctuations in the profiles effect from the horizontal variability
Fig. 3: Color code as in figure [2 Fig. 4: Color code as in figure [2 of the cloud
289 ]
288.51 .
o 288" : : 2
g2s7s - Mixing diagram shows that mixing of cloud
- with the air from above the capping inver- Refor Acknowledgements
5 | - sion does not result in buoyancy reversal. elierences
285.51 ‘ ' m o e .
I S N ~ We thank Herman Gerber for organizing POST campaign.

o o1 ez 03 a4 05 G o7 ae 0 [1] H. Gerber, G. Frick, S. P. Malinowski, W. Kumala, and S. Krueger. Entrainment rates and microphysics in post stratocumulus. J. Geophys. Res-Atmos., 118:12094712109, 2013. This research was supported by Polish National Science Centre with the grant UMO-2012/07/N/ST10/03473.



