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1. INTRODUCTION

Peer-reviewed literature shows high-biased CRM and LAM simulated
convective area and reflectivity aloft in deep convective systems,
notably for tropical oceanic conditions [e.g., Varble et al., 2011]. How
much is a result of microphysics assumptions vs. convective dynamics?
What is the impact on stratiform precipitation? We use TWP-ICE
observations with many model setups to investigate these questions.
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2. METHODS AND MODELS

e Compare 10 CRM simulations and many LAM (WRF) simulations of
an active monsoon MCS on January 23-24, 2006 with observations.
Simulations are based on setups from TWP-ICE CRM and LAM
Intercomparison Studies [Fridlind et al., 2012; Zhu et al., 2012].

 Simulations have 0.9-1 km grid spacing with 76-102 vertical levels.

* CRM domain sizes are ~176 km x 176 km, use periodic lateral
boundaries with an idealized oceanic surface, and are forced with
an observational variational analysis (VA).

e LAMs are forced by the ECMWF analysis, have 4 2-way nested
domains with a 450 km x 330 km inner domain including land.

 All simulations use various 1- and 2-moment bulk microphysics
schemes with similar setups for other physics schemes.

 Convective and stratiform regions are separated with a slightly
modified Steiner et al. [1995] reflectivity texture algorithm.

Varble et al. (2011), Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations:
Precipitation and cloud structure. J. Geophys. Res., 116, D12206, d0i:10.1029/2010JD015180.

Fridlind et al. (2012), A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys.
Res., 117, D05204, doi: 10.1029/2011JD016595.

Zhu et al. (2012), A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale
convective event, J. Geophys. Res., 117, D11208, doi:10.1029/2011JD016447.

Varble et al. (submitted to JGR), Evaluation of cloud-resolving and limited area model intercomparison simulations
using TWP-ICE observations. Part 1: Deep convective updraft properties.

convective system precipitation biases
Adam Varble!, Ann Fridlind?, Hugh Morrison3, and Ed Zipser?

IDepartment of Atmospheric Sciences, University of Utah, 2ZNASA GISS, 3National Center for Atmospheric Research

3. DEEP CONVECTIVE UPDRAFT BIASES

Comparing simulated (symbols) and dual-Doppler (black; analysis by
Scott Collis) 3D-defined deep updrafts beginning below 1 km and ending
above 15 km shows significantly larger reflectivities and vertical
velocities in simulations. Simulated deep updrafts also contain large
water content with reflectivities that are modulated by hydrometeor
size distribution assumptions. Previous studies using profiler, airborne
Doppler radar, and aircraft observations of near coastal overshooting
tropical convection support dual-Doppler values for this case.
Preliminary results (not shown) for mid-latitude continental convection
from MC3E also produce high biases, but lesser in magnitude.

4. IMPACTS OF LOFTING AND FREEZING RAIN

Large simulated rainwater contents (RWC) are lofted and frozen.
Removing the latent heat of freezing for rain in the WRF simulation
removes extreme upper tropospheric vertical velocities (W) by
significantly reducing maximum deep updraft buoyancy aloft.
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5. IMPACTS OF RESOLUTION

For quarter domain simulations, 100-m grid spaced simulations
degraded to 900-m grid spacing have ~15% less upward mass flux,
~25% less condensate, and ~30% less upward vertical condensate flux
at 10-km altitude than 900-m grid spaced simulations during the 5-hr
dual-Doppler observing period, with most of this difference resulting
from vertical velocities > 10 m s or condensate loadings > 3 g m=.
Vertical cross-sections through representative updrafts display this
difference below (MSE filled (top panels), Condensate filled (bottom
panels), and W contoured at 1, 5, 10, 15, 20, 25, and 30 m s).
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6. EFFECTS ON STRATIFORM

Simulated stratiform rainfall (symbols) is lower
than observed (in black) because downward ice
mass flux is insufficient at the melting level (not
This may be related to overly intense
convection detraining too high in the troposphere,
although model forcing and microphysics

shown).

assumptions play a non-negligible role.
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7. CONTRIBUTION FROM MICROPHYSICS ASSUMPTIONS

Using the Morrison scheme in WRF, increasing raindrop breakup and the rain
gamma shape parameter (n) produce better agreement with retrievals
Altering breakup or u significantly impacts
reflectivity and the convective-stratiform separation, but MCS evolution and
deep convective updrafts are not significantly impacted. Altering the snow m-
D or rimed ice fall speed can decrease reflectivity biases, but they have little
None of these changes reduces updraft strength,
but the relative amounts of graupel/hail and snow are impacted (not shown).

(courtesy Christopher Williams).

impact on MCS evolution.

Simulated profiles (spread: gray, median dashed); Profiler obs. (black)
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8. CONCLUSIONS

Total Latent Heating [K km? s']

 Simulated deep convective vertical velocities and water contents are too
high, which couples with hydrometeor n(D) assumptions to yield high

biases in radar reflectivity aloft and convective area.

 Extreme upper tropospheric vertical winds result from lofting and freezing
large rainwater contents, which amplify buoyancy and reflectivity aloft.
* Reducing grid spacing to 100-m weakens the most intense convection, but

not enough to match observations.

* Intense convection detrains too high, combining with lateral boundary
condition errors (not shown) to negatively impact stratiform precipitation.

* Realistically altering raindrop breakup, the rain gamma shape parameter,
and the snow m-D relationship improves comparisons with observational
retrievals, but biases still remain because of the overly intense convection.
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