PARASOL EMPIRICAL POLARIZATION DISTRIBUTION MODELS (PDM’S) FOR CLARREO

DANIEL GOLDIN (SSAI), CONSTANTINE LUKASHIN (NASA-LARC), WENBO SUN (SSAI)
MOTIVATION

- CLARREO (Climate Absolute Radiance and Refractivity Observatory) is a NASA Decadal Survey Mission recommended by NRC
- CLARREO’s objectives:
 - make highly accurate spectral reflectance observations
 - serve as an on-orbit intercalibration standard for other instruments (MODIS, VIIRS)
- In order to achieve climate accuracy radiometric measurements need to be corrected for polarization effects
- CLARREO’s accuracy goal: 0.3% (k = 2), including all uncertainty contributions
PDM’S: FROM PARASOL TO CLARREO

• Degree of polarization P, angle of linear polarization χ and total radiance I completely specify the polarization state

• PDMs are P and χ distributions (or tables) in spherical coordinates over given surface type

• **OBJECTIVE 1**: Construct Polarization Distribution Models (PDMs) as a function of physical parameters and viewed scene type (e.g. clear-sky surface, clouds) using 2006 PARASOL dataset
 • Why use PARASOL data? The only instrument on orbit that provided multi-angle polarization measurements

• **OBJECTIVE 2**: Apply PDM uncertainties to find the effect on intercalibration accuracy with CLARREO

CLARREO: OVERVIEW

• **Double-Module Reflectance Spectrometer**
 - solar reflected spectra to infer cloud feedbacks, snow/ice albedo feedbacks, and decadal change of clouds, radiative fluxes, aerosols, snow cover, sea ice
 - 320-2300 nm spectral coverage
 - polarization sensitivity: $< 0.5\%$ (k=2) for $\lambda < 1000$ nm, $< 0.75\%$ (k=2) for $\lambda > 1000$ nm
 - reflectance uncertainty of 0.3% (k = 2)

• **2 Infrared Spectrometers**
 - temperature, water vapor and cloud feedbacks and decadal change of temperature, water vapor, clouds, and greenhouse gas radiative effects
 - measurement uncertainty of 0.1 K (k = 3)

• **2 Global Navigational Satellite System Radio Occultation instruments**
 - decadal change of temperature profiles
 - measurement uncertainty of 0.1 K (k = 3)
PARASOL: OVERVIEW

- Part of A-Train, 705 km altitude
- 274×242 pixel CCD detector array, wide view optics
- 9 spectral channels from blue (443 nm) to infrared (1020 nm)
 - 3 polarization bands: 490 nm, 670 nm, 865 nm
- Pixel resolution for Level-1B data: 5.3×6.2 km (at nadir)
- Absolute accuracy: 2-3% [Riédi et al., EarthCare Mtg, 2007]
- Up to 14 views per pixel (collected off-line): multi-angular sampling improves PDMs’ precision
- Current status: after ~9 years in orbit PARASOL was shut off on Dec. 18, 2013
PDM’S DEFINITIONS

- **PDM**: 2D map of time-averaged (1 yr here) degree of polarization P or angle of linear polarization χ
 - x axis: Viewing Zenith Angle
 - y axis: Relative Azimuth
- **Start with P.** It describes (in our case) the degree of polarization of the light reflected from Earth’s surface

Polarized reflectance:

$$\rho_P = \frac{\pi I_p}{E \cos(\theta_s)}$$

Total reflectance:

$$\rho = \frac{\pi I}{E \cos(\theta_s)}$$

Stokes parameters

- $I = I_{0^\circ} + I_{90^\circ}$
- $Q = I_{0^\circ} - I_{90^\circ}$
- $U = I_{45^\circ} - I_{135^\circ}$

$$P = \rho_P / \rho = I_p / I = \frac{\sqrt{Q^2 + U^2}}{I}$$
SAMPLE PDM FOR DEGREE OF POLARIZATION FOR CLEAR SKY OVER WATER BODIES (PARASOL 2006)

Asymmetry due to aerosols

Cuts on Data

<table>
<thead>
<tr>
<th>Cut</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBP index</td>
<td>17</td>
</tr>
<tr>
<td>(\theta_s)</td>
<td>(40^\circ < \theta_s < 50^\circ)</td>
</tr>
<tr>
<td>Cloud fraction</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cloud phase</td>
<td>240</td>
</tr>
<tr>
<td>Wind speed</td>
<td>< 2.5 m/s</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>670 nm</td>
</tr>
</tbody>
</table>

\(P_{max} \approx 0.9\)

Clear Sky bitmask (PARASOL-specific)

P Mean for Scene Type 17
PDM’S FOR ANGLE OF LINEAR POLARIZATION

Angle of Linear Polarization relative to principal plane (PARASOL)

\[\chi = \frac{1}{2} \arctan(U/Q). \]

Angle of Linear Polarization relative to scattering plane

\[\psi = \chi - \alpha. \]

where:

\[\tan \alpha = \frac{\sin \phi}{\sin \theta_v \tan \theta_s - \cos \theta_v \cos \Delta \phi}. \]

Expect \(\psi \approx 90^\circ \)
Principal and scattering planes coincide $\Rightarrow \chi = \psi = 90^\circ$

At $VZA = 0$, 1 degree in $VZA \iff 1$ degree in χ

High std deviations: low polarization region
RELATIVE INTERCALIBRATION (RI) UNCERTAINTY

Reference intercalibration (RI) relative uncertainty \(\left(\delta_{RI} \equiv \sigma_{RI}/\rho_{RI} \right) \):

\[\delta_{RI} = \sqrt{\delta_0^2 + \left(\frac{mP}{1+mP} \right)^2 \left(\delta_m^2 + \delta_P^2 \right)} \]

Relative uncertainties:
- \(\delta_0 = \sigma_0/\rho_0 \): CLARREO's own uncertainty + intercalibration auto-correlation unc. + imager unc.
- \(\delta_m = \sigma_m/m \): unc. in imager sensitivity to polarization
- \(\delta_P = \sigma_P/P \): polarization unc. from PDMs

Next steps:
1. Fix some variables at reasonable values, let others vary:
 - \(\delta_0 = 0.2\% \) (k = 1)
 - \(m \) and \(\delta_m \) will vary
2. Plot \(\delta_P \) vs \(P \) and parametrize it
3. Plot \(\delta_{RI} \) vs \(P \) using the values in step 1 and 2.

Imager sensitivity to polarization

\[\rho_{\text{imager}} = \frac{\rho_0}{1+mP} \]

Error propagation

C. Lukashin et al.
δ_p VS P FIT FOR WATER BODIES

\[\delta_p \text{ vs } P \]

\[\text{Fit: } p_0 + p_1/x + p_2x \]

\[\chi^2 / \text{ndf} \rightarrow 46.12 / 84 \]

\[p_0 \rightarrow 0.1492 \pm 0.0090 \]

\[p_1 \rightarrow 0.01287 \pm 0.00135 \]

\[p_2 \rightarrow -0.08362 \pm 0.01053 \]

Error bars from PDM uncertainties

\(\delta_p\) behaves as we’d like it to behave: gets smaller as \(P\) increases

Fraction (not percent!)
RI IMAGER UNCERTAINTY FOR WATER BODIES FROM δP vs P FITS

\[\delta_{RI} = \sqrt{\delta_0^2 + \left(\frac{mP}{1+mP} \right)^2 (\delta_m^2 + \delta_P^2)} \]

$\delta_0 = 0.2\%$

$\delta_m = 3\%$

$\delta_m = 10\%$

$m = 0.10$

$m = 0.05$

$m = 0.03$

roughly, MODIS accuracy

- Degradation in imager’s sensitivity (m or δm) leads to greater error in imager’s reflectance measurements
CONCLUSIONS AND PLANS

• **Done:** Produced PDMs for clear sky over water bodies using 2006 PARASOL data

• **Done:** Applied PDM results to estimate intercalibration uncertainties dependence on degree of polarization

• **In progress:** Looking at suitability of PDMs for clear-sky land surfaces and cloudy scene types

• **Future:** PARASOL has only 3 bands (490, 670 and 865 nm). Will extend PDMs over entire spectrum

• **Future:** Considering PDM parametrization with multivariate analysis, e.g. Artificial Neural Networks

• **Future:** Compare 2006 PARASOL PDMs with Radiative Transfer Models (RTM)

• **Future:** Merge PARASOL Level-1 with MODIS Level-2 data. Develop PDMs for new data product. Validate it
DOES PDM FOR THE DEGREE OF POLARIZATION MAKE SENSE?

PARASOL data (12 days) (C. Lukashin et. al)

Pick P_{max} region
$\theta > 30, 170 < \phi < 190$
and plot scattering angle

Max polarization occurs for the scatt angle > 140 (rainbow region) as expected
SAMPLE PDM FOR CLEAR SKY OVER WATER BODIES: AEROSOL EFFECTS

Aerosol Optical Depth (τ)

Cuts on Data

<table>
<thead>
<tr>
<th>Cut</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBP index</td>
<td>17</td>
</tr>
<tr>
<td>θ_s</td>
<td>$40^\circ < \theta_s < 50^\circ$</td>
</tr>
<tr>
<td>Cloud fraction</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cloud phase</td>
<td>240</td>
</tr>
<tr>
<td>Wind speed</td>
<td>< 2.5 m/s</td>
</tr>
<tr>
<td>Optical depth (τ)</td>
<td>< 0.1</td>
</tr>
</tbody>
</table>

λ 670 nm
(II) SAMPLE PDM FOR CLEAR SKY OVER WATER BODIES: AEROSOL EFFECTS

PDM from Slide 7, but with aerosol optical depth cut (previous slide)

More symmetric

$\sigma(P) \sim 0.1$

$\sigma(P)/P \sim 10-30%$

Low P regions: Q and U close to noise
DO χ PDMS MAKE SENSE?
LOOK AT ψ

From χ, angle relative to principal plane, calculate ψ, angle relative to scattering plane.

Expect mean $\psi \approx 90^\circ$.

Angle of Linear Polarization relative to scattering plane

$$\psi = \chi - \alpha.$$

where:

$$\tan \alpha = \frac{\sin \phi}{\frac{\sin \theta_v}{\tan \theta_s} - \cos \theta_v \cos \Delta \phi}.$$

$\psi \approx 90^\circ$, slightly lower (?)

Constant $= 1.209e+06$

Mean $= 87.69$

Sigma $= 1.889$