

PARASOL EMPIRICAL POLARIZATION DISTRIBUTION MODELS (PDM'S) FOR CLARREO

<u>DANIEL GOLDIN</u> (SSAI), CONSTANTINE LUKASHIN (NASA-LARC), WENBO SUN (SSAI)

MOTIVATION

- CLARREO (Climate Absolute Radiance and Refractivity Observatory) is a NASA Decadal Survey Mission recommended by NRC
- CLARREO's objectives:
 - make highly accurate spectral reflectance observations
 - serve as an on-orbit intercalibration standard for other instruments (MODIS, VIIRS)
- In order to achieve climate accuracy radiometric measurements need to be corrected for polarization effects
- CLARREO's accuracy goal: 0.3% (k = 2), including all uncertainty contributions

14 th AMS Conference on Atmospheric Radiation

PDM'S: FROM PARASOL TO CLARREO

- Degree of of polarization *P*, angle of linear polarization χ and total radiance *I* completely specify the polarization state
- PDMs are *P* and χ distributions (or tables) in spherical coordinates over given suface type
- <u>OBJECTIVE 1</u>: Construct Polarization Distribution Models (PDMs) as a function of physical parameters and viewed scene type (e.g. clear-sky surface, clouds) using 2006 PARASOL dataset
 - Why use PARASOL data? The only instrument on orbit that provided multi-angle polarization measurements
- OBJECTIVE 2: Apply PDM uncertainties to find the effect on intercalibration accuracy with CLARREO
- Extending the work done by C. Lukashin et al. (IEEE Trans. Geosci. Remote Sens. V. 51, No.3, 2013)

CLARREO: OVERVIEW

Double-Module Reflectance Spectrometer

- solar reflected spectra to infer cloud feedbacks, snow/ice albedo feedbacks, and decadal change of clouds, radiative fluxes, aerosols, snow cover, sea ice
- 320-2300 nm spectral coverage
- polarization sensitivity: < 0.5% (k=2) for λ < 1000 nm, < 0.75% (k=2) for λ > 1000 nm
- reflectance uncertainty of 0.3% (k = 2)

2 Infrared Spectrometers

- temperature, water vapor and cloud feedbacks and decadal change of temperature, water vapor, clouds, and greenhouse gas radiative effects
- measurement uncertainty of 0.1 K (k = 3)
- 2 Global Navigational Satellite System Radio Occultation instruments
 - decadal change of temperature profiles
 - measurement uncertainty of 0.1K (k = 3)

Reflectance Spectrometer

Daniel Goldin

- **PARASOL: OVERVIEW**
- Part of A-Train, 705 km altitude •
- 274×242 pixel CCD detector array, ٠ wide view optics
- 9 spectral channels from blue (443 ٠ nm) to infrared (1020 nm)
 - 3 polarization bands: 490 nm, 670 nm, 865 nm
- Pixel resolution for Level-1B data:
 - 5.3×6.2 km (at nadir)
- Absolute accuracy: 2-3% [Riédi et ٠ al., EarthCare Mtg, 2007]
- Up to 14 views per pixel (collected off-line): multi-angular sampling improves PDMs' precision
- Current status: after ~9 years in orbit ٠ PARASOL was shut off on Dec. 18, 2013

PDM'S DEFINITIONS

- <u>PDM</u>: 2D map of time-averaged (1 yr here) degree of polarization *P* or angle of linear polarization χ
 - x axis: Viewing Zenith Angle
 - y axis: Relative Azimuth
- Start with *P.* It describes (in our case) the degree of polarization of the light reflected from Earth's surface

PDM'S FOR ANGLE OF LINEAR POLARIZATION

Angle of Linear Polarization relative to principal plane (PARASOL)

 $\chi = \frac{1}{2} \arctan(U/Q).$

Angle of Linear Polarization relative to scattering plane

$$\psi = \chi - lpha.$$

χ PDM'S FOR CLEAR-SKY WATER BODIES (PARASOL 2006)

(deg)

RELATIVE INTERCALIBRATION (RI) UNCERTAINTY

C. Lukashin et al. (IEEE Trans. Geosci. Remote Sens. V. 51, No.3, 2013)

Reference intercalibration (RI) relative uncertainty ($\delta_{RI} \equiv \sigma_{RI} / \rho_{RI}$):

$$\delta_{RI} = \sqrt{\delta_0^2 + \left(\frac{mP}{1+mP}\right)^2 \left(\delta_m^2 + \delta_P^2\right)}$$

Relative uncertainties:

 $\delta_0 = \sigma_{o0}/\rho_0$: CLARREO's own uncertainty + intercalibration auto-correlation unc. + imager unc. $\delta_m = \sigma_m/m$: unc. in imager sensitivity to polarization

 $\delta_P = \sigma_P / P$: polarization unc. from PDMs

Next steps:

Fix some variables at 1 reasonable values, let others vary:

• $\delta_0 = 0.2\%$ (k = 1)

- *m* and δ_m will vary
- Plot δ_P vs *P* and parametrize it 2.
- Plot δ_{Rl} vs *P* using the values 3. in step 1 and 2.

δ_p *VS P* FIT FOR WATER BODIES

P Mean for Scene Type 17

RI IMAGER UNCERTAINTY FOR WATER BODIES FROM δ*P* vs *P* FITS

- Degradation in imager's sensitivity (m or δm) leads to greater error in imager's reflectance measurements

accuracy

Daniel Goldin

CONCLUSIONS AND PLANS

- <u>Done</u>: Produced PDMs for clear sky over water bodies using 2006 PARASOL data
- Done: Applied PDM results to estimate intercalibration uncertainties dependence on degree of polarization
- In progress: Looking at suitability of PDMs for clear-sky land surfaces and cloudy scene types
- <u>Future</u>: PARASOL has only 3 bands (490, 670 and 865 nm). Will extend PDMs over entire spectrum
- <u>Future</u>:considering PDM parametrization with multivariate analysis, e.g. Artificial Neural Networks
- <u>Future:</u> Compare 2006 PARASOL PDMs with Radiative Transfer Models (RTM)
- <u>Future:</u> Merge PARASOL Level-1 with MODIS Level-2 data. Develop PDMs for new data product. Validate it

DOES PDM FOR THE DEGREE OF POLARIZATION MAKE SENSE?

Note: flipped θ , ϕ axes

Max polarization occurs for the scatt angle > 140 (rainbow region) as expected

Pick P_{max} region

(I) SAMPLE PDM FOR CLEAR SKY OVER WATER BODIES: AEROSOL EFFECTS

Daniel Goldin

Cuts on Data

Cut	VALUE
IGBP index	17
θ_s	$40^\circ < \theta_s < 50^\circ$
Cloud fraction	< 0.01
Cloud phase	240
Wind speed	< 2.5 m/s
Optical depth (τ)	< 0.1
λ	670 nm

July 10, 2014

4

(II) SAMPLE PDM FOR CLEAR SKY OVER WATER BODIES: AEROSOL EFFECTS

DO χ PDMS MAKE SENSE? LOOK AT ψ

From χ , angle relative to principal plane, calculate ψ , angle relative to scattering plane.

Expect mean $\psi \approx 90^{\circ}$.

Angle of Linear Polarization relative to scattering plane

$$\psi = \chi - \alpha.$$

where:

$$an lpha = rac{\sin \phi}{rac{\sin heta_v}{ an heta_s} - \cos heta_v \cos \Delta \phi}.$$

