Dynamical conditions of ice supersaturation formation in the extratropical upper troposphere and lower stratosphere

Minghui Diao^{1,2} and Jorgen B. Jensen²

¹Advanced Study Program (ASP), National Center for Atmospheric Research (NCAR); ²Research Aviation Facility (RAF), Earth Observatory Laboratory (EOL), NCAR;

Collaborators:

Laura L. Pan (ACD/NCAR), Eric Jensen (NASA/Ames), Cameron Homeyer (Oklahoma State Univ.),

Shawn Honomichl (ACD/NCAR)

VCSEL hygrometer PI: Mark A. Zondlo (Princeton Univ.)

SID-2H instrument PI: Andrew J. Heymsfield (MMM/NCAR)

CO/O3 instrument PI: Teresa Campos (RAF/NCAR)

START08 Co-Principal Investigators:

Elliot Atlas (Univ. of Miami), Kenneth P. Bowman (Texas A&M),

Laura Pan (NCAR), Steve Wofsy (Harvard Univ.);

Andrew Heymsfield (NCAR)

START08 Science Team; RAF Technical and Ground Crews.

ASP Postdoctoral fellowship and travel fund

2014-July-10

Outline

- PART 1. Introduction
 - Ice supersaturation (ISS)
 - START08 flight campaign
- PART 2. Two case studies of ISS formation
 - Different formation mechanisms
- PART 3. Systematic analyses of ISS location
 - (A) Relationship with thermal tropopause height
 - (B) Relationship with jet stream
- PART 4. Conclusions

Introduction

1. Ice supersaturation (ISS)

a) Definition of Ice Supersaturation (ISS)

 $ISS = RHi - 1 = e / e_s - 1$

e: water vapor pressure

e_s: saturation vapor pressure wrt ice

b) Definition of Ice Supersaturated Regions (ISSRs) Spatially continuous RHi > 100%

2. Dynamical conditions of ISS formation

In-situ	Reanalysis
measurements	data
ISSRs:	Dynamics:
~ 1 km scale	mesoscale
[Diao et al. 2014,	to synoptic
ACP]	scale.

Lack of analyses relating ISS microscale properties with synoptic-scale dynamics

NSF START08 Campaign (The Stratosphere Troposphere Analyses of Regional Transport campaign)

[Pan, 2008]

18 flights , 120 hours, 1 Hz April 21 to June 28, 2008 over North America.

Science Objective:

Dynamical and chemical processes in the extratropical Upper troposphere and Lower stratosphere (Ex-UT/LS)

T'<= - 40 °C

Meteorological analyses: NCEP GFS reanalysis (thermal tropopause and wind map)

- ~35 km horizontally
- ~500-1000 m vertically (UT/LS)

1519 mi

Case study of ISS formation in the Ex-UT/LS (Research flight RF04, April 28 2008)

RF04 sampling across the **polar jet core** (both cyclonic and anticyclonic sides)

Green contour: horizontal wind speed (10-55 m/s); **Light blue**: geopotential height **Black** line: GV; **Red dots**: ice supersaturation; **Pink dashed line**: A-B transect (118 – 86 W, and 38.4 – 39.8 N)

Vertical cross section analyses of RF04

Green contour: horizontal wind (10-55 m/s); Light blue dots: thermal tropopause; Blue lines: PVU; Yellow crosses: ice crystals Vertical velocity (w) Red: positive; Blue: negative

ISS formation dynamical conditions:

- **1. Below** the thermal tropopause
- 2. Anticyclonic side of jet core
- **3.** GFS data show **positive** vertical velocity: **Mesoscale uplifting** Importance of large scale uplift consistent with warm conveyor belt case study (Spichtinger et al. 2005)

Case study of ISS formation in the Ex-UT/LS (Research flight RF11, May 14 2008)

RF11 flight plan: *Similar* to RF04: across **polar jet core**

Green contour: horizontal wind speed (10-55 m/s); **Light blue**: geopotential height **Black** line: GV; **Red dots**: ice supersaturation; Yellow crosses: ice crystals; **Pink dashed line**: A-B transect (118 – 86 W, and 47.4 – 44.7 N)

Vertical cross section analyses of RF11

Green contour: horizontal wind (10-55 m/s); Light blue dots: thermal tropopause; Blue lines: PVU; Yellow crosses: ice crystals

Different ISS formation mechanisms RF11 vs. RF04:

1. Around the thermal tropopause

2. Both sides of jet core

3. GFS data show both **negative** and **positive** vertical velocity

Clear-air turbulence around jet stream [Shapiro 1976]

ISS formation mechanisms (RF04 vs RF11) Chemical tracer analyses (O_3 -CO and O_3 -H₂O)

Ice supersaturation frequency related to thermal tropopause and tropopause break

- 1) Below thermal tropopause height (vertical)
- 2) Sampling polar side of tropopause break (horizontal)

ISS location related to jet core (U_{max})

Ratio of anticyclonic / cyclonic frequencies in START08: ISS: 1.6 Ice crystals: 1.3

Consistent with previous studies:

- **4 years satellite observations** [Menzel et al. 1992]
- ECMWF model data [Gierens et al. 2012]

Conclusions

- Case studies of ISS observations around the extratropical thermal tropopause
 - Two different mechanisms

(mesoscale uplifting vs. small scale waves/turbulences)

- Tracer analyses: Troposphere-troposphere mixing vs.
 Stratosphere-troposphere mixing
- ISS formation dynamical conditions:
 - Vertically: mostly confined by thermal tropopause height
 - Horizontally: higher ISS frequency in the *anticylonic* side of jet core

• Future work

- Evaluate the representation of two ISS formation mechanisms in cloud models.
- Compare the influences of different scales of dynamics on ISS formation.

