

Quantification of Satellite Cloud Retrieval Uncertainties from Multiple Platforms **Using A-Train Observations**

Christopher R. Yost¹, Patrick Minnis², J. Kirk Avers¹, Kristopher M. Bedka², Sarah T. Bedka¹, Patrick W. Heck³, Rabindra Palikonda¹, Douglas A. Spangenberg¹, Sunny Sun-Mack¹, and Qing Trepte¹

P6-357 Introduction

¹Science Systems & Applications, Inc., Hampton, VA

²NASA Langlev Research Center, Hampton, VA

Cloud Optical Depth

³CIMSS, University of Madison-Wisconsin, Madison, WI

Cloud optical depth (COD) comparisons are limited to non-opaque ice-phase clouds, corresponding to COD < ~6, because they do not completely attenuate the lidar beam.

The smallest differences occur for nighttime snow/ice-free conditions when IR-only algorithms are used to retrieve COD.

Differences are largest for daytime snow/ice surfaces because of increased reflection from bright surfaces. See S. Bedka poster (P6-344) for techniques being used to mitigate these difficulties.

Cloud Water Path

The AMSR-E liquid water path (LWP) retrieval algorithm is performed over water surfaces only, so no comparisons with AMSRE-F over land are currently available. Ground-based microwave radiometer (MWR) observations can be used for validation in limited locations. Precipitating clouds were excluded from the analysis, effectively limiting comparisons to clouds with LWP < 200 g m⁻², and no distinction was made for opaque and non-opaque clouds.

The AMSR-E and VIIRS data records have no temporal overlap, so LWP comparisons are shown for AVHRR and MODIS only

LWP is overestimated over snow/ice-covered surfaces during the day because of surface reflection. Nighttime LWP is underestimated because optical depths greater than 4-6 cannot be retrieved with any certainty using IR-only technig

DATTIME Dial, Snow/Ice-Free NIGHTIME Global, Snow/Ice-Covered Global, Snow/Ice-Covered Global, Snow/Ice-Covered Global, Snow/Ice-Covered	AVRR Bias RMSE 10.56 66.03 58.57 242.31 0.20 17.88 33.29 97.15 Smallest IV moderatel Moderatel RR Moderatel	Mile D Bias 8 2.84 0 234.19 8 4.55 5 61.88 WP differe y to highly MO MO	RMSD 32.65 497.75 24.45 109.79 correlation correlation	9.30* 5.31* 5.55 47.13* ur for niced with	RMSD 35.50* 18.95* 13.70 74.67* ighttime CALIOF	are shown for non-opaqu clouds only. The use of IR-only technique during daytime may hel reduce IWP biases over snow ice-covered surfaces. IR-only retrievals. Values are
DAYTIME Global, Snow/Ice-Free 1 Slobal, Snow/Ice-Free 3 NIGHTIME Global, Snow/Ice-Free 3 Slobal, Snow/Ice-Free 3	Bias RMSL 10.56 66.03 58.57 242.31 0.20 17.88 33.29 97.15 Smallest IV moderatel RR	Bras Bras 2.84 0 234.19 3 4.55 5 61.88 WP differe y to highly MO	24.45 109.79 105 105	9.30* 5.31* 5.55 47.13* ur for niced with	135.50* 18.95* 13.70 74.67* ighttime CALIOF	The use of IR-only technique during daytime may hel reduce IWP biases over snow ice-covered surfaces. IR-only retrievals. Values are
DATINE Biobal, Snow/Ice-Free NIGHTIME Global, Snow/Ice-Covered Global, Snow/Ice-Covered Jobal, Snow/Ice-Covered	10.56 66.03 58.57 242.30 0.20 17.88 33.29 97.15 Smallest IV moderatel	 2.84 234.19 4.55 61.88 WP differe y to highly MO 	32.65 497.75 24.45 109.79 ences occo correlat	9.30* 5.31* 5.55 47.13* tur for niced with	35.50* 18.95* 13.70 74.67* ighttime CALIOF	The use of IR-only technique during daytime may hel reduce IWP biases over snow ice-covered surfaces. IR-only retrievals. Values are
Global, Snow/Ice-Free 1 Slobal, Snow/Ice-Covered 6 NIGHTTIME Global, Snow/Ice-Free 1 Slobal, Snow/Ice-Free 1 Slobal, Snow/Ice-Free 1	10.56 66.03 58.57 242.30 0.20 17.88 33.29 97.15 Smallest IV moderatel	 2.84 234.19 4.55 61.88 WP differe y to highly MO 	32.65 497.75 24.45 109.79 mces occ y correlat	9.30* 5.31* 5.55 47.13* cur for nited with	35.50* 18.95* 13.70 74.67* ighttime CALIOF	The use of IR-only technique during daytime may hel reduce IWP biases over snow ice-covered surfaces. IR-only retrievals. Values are
alobal, Snow/Ice-Covered 6 NIGHTIME Global, Snow/Ice-Free Blobal, Snow/Ice-Covered 3	0.20 17.88 33.29 97.15 Smallest IV moderatel	0 234.19 8 4.55 5 61.88 WP differe y to highly MO	497.75 24.45 109.79 nces occ y correlat	5.31* 5.55 47.13* cur for ni red with	18.95* 13.70 74.67* ighttime CALIOF	during daytime may hel reduce IWP biases over snow ice-covered surfaces. IR-only retrievals. Values are
Slobal, Snow/Ice-Free Slobal, Snow/Ice-Covered 3	0.20 17.88 33.29 97.15 Smallest IV moderatel	 4.55 61.88 WP differe y to highly MO 	24.45 109.79 nces occ correlat	5.55 47.13* tur for ni ted with	13.70 74.67* ighttime CALIOF	ice-covered surfaces. IR-only retrievals. Values are
Global, Snow/Ice-Free Global, Snow/Ice-Covered 3	0.20 17.88 33.29 97.15 Smallest IV moderatel	8 4.55 5 61.88 WP differe y to highly MO	24.45 109.79 Inces occ correlat	5.55 47.13* aur for ni ed with	13.70 74.67* ighttime CALIOF	IR-only retrievals. Values are
Slobal, Snow/Ice-Covered	33.29 97.15 Smallest IV moderatel	61.88 WP differe y to highly MO	109.79 ences occ y correlat	47.13* aur for n ed with	74.67* ighttime CALIOF	IR-only retrievals. Values are
	Smallest IV moderatel	WP differe y to highly MO	nces occ / correlat DIS	ur for n ed with	ighttime CALIOF	IR-only retrievals. Values are
OPAQU 8	14.23 9.20 17.64	5 30%	: [28] : 清	0.000	100	xmean: 13.66 dif: 5.55 add: 12.58
AHAA opague and a second secon	R	MO	DIS			
OPAQUE 8	14.23 1 9.30 fe: 17.64	336 6	128.33	0 0310	100	xmean: 12.55 dif: 5.55 side: 12.55
ELO BER ®	99 17.88 0.804 # 0.48 # 10646	* 	1 新力学	8 0.000	80	rend: 13.70 0.000 rpts: 118
T U	•••••• s	* 9	1869	6.006	60	0.000
<u>0</u> ż * "	0.00	40	261	L 0.04	40	2 0.00 1
z 2 2 20	0.802	20	1827	6.802	20	
	0.000	. <mark>//</mark>	$m_{\lambda} = 1$. 19 7	0.000
0 20 40 60 CALIPSO	80 100	0 20 40 Ci	1 60 90 ALIPSO	100	0 20	40 60 80 100 CALIPSO

(ASDC) and AMSR-E products were obtained via the Reverb/ECHO orderin rol Contact Information

Cloud Altitude

Satellite cloud property retrievals are used for both initialization and validation of cloud models and global circulation models. It is therefore important to characterize the uncertainty of satellite retrievals and identify any existing biases. The NASA Langley Cloud and Radiation Group uses a common set of algorithms to retrieve cloud thermodynamic phase, altitude, optical depth, and water path from imagers such as the Advanced Very High Resolution Radiometer (AVHRR), and the Clouds and the Earth's Radiant Energy System (CERES) Clouds Working Group routinely retrieves these same properties from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imaging Radiometer Suite (VIIRS) data. Active remote sensors in the A-Train Constellation such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provide a wealth of information to independently assess the passive satellite retrievals.

Data and Validation Strategy

Satellite imager data:

- NOAA-18 AVHRR 4-km Global Area Coverage (GAC) data (Oct 2008) Aqua-MODIS, CERES Clouds Edition 4; subsampled 1-km pixels; 15 days from
- Oct 2008, Jul 2012, Oct 2012, Jan 2012, Apr 2013
- · SNPP-VIIRS, CERES Clouds Edition 1; subsampled 750-m pixels; 5 days from March 2013

Products used to validate imager retrievals:

- CALIPSO Vertical Feature Mask (VFM) CALIPSO 5-km Cloud Lavers Product (05kmCLav)
- CALIPSO 333-m Cloud Layers Product (333mCLay)
- · AMSR-E Level 2 Ocean Product (Wentz Algorithm)

Spatial/temporal matching:

CALIPSO provides cloud heights on various spatial scales ranging from 333 m to 80 km. Many of the CALIPSO products are provided at 5-km resolution which is comparable to the spatial resolution of most imagers. For this reason, all satellite data is matched spatially to 5-km segments of the CALIPSO ground track. Imager pixels within 2.5 km of each segment's midpoint and within 15 minutes of the CALIOP scan time are considered matches. Since AMSR-E has a larger footprint, the mean LWP is computed for all imager pixels within the AMSR-E footprint nearest the CALIOP footprint. While MODIS and VIIRS view the CALIPSO ground track near nadir, AVHRR may have off-nadir views. All AVHRR pixels were corrected for parallax. In the following sections, all differences are computed as AVHRR/MODIS/VIIRS minus CALIOP/AMSR-E.

INSTRUMENT/ PRODUCT	APPROX. SPATIAL RES.	CLOUD PROPERIES PROVIDED					
VFM	1/3 – 80 km	cloud mask (see Q. Trepte poster, P6-354) phase					
05kmCLay	5 km	optical depth (COD), ice water path (IWP)					
333mCLay	1/3 km	cloud top altitude (CTA)					
AMSR-E	12 km	liquid water path (LWP)					

Cloud Phase

CALIPSO VFM data were used to identify overcast scenes consisting of singlephase clouds, i.e. 100% water or 100% ice. Scenes containing faint cirrus detected by CALIOP using 80-km horizontal averaging were excluded from the analysis. The fraction of correctly identified scenes (FC) is shown in the chart below for all three imagers and for different surface types.

FRACTION OF SCENES WITH CORRECTLY IDENTIFIED PHASE								
	AVHRR	MODIS	VIIRS					
DAYTIME								
Nonpolar, Ocean	0.956	0.978	0.991					
Nonpolar, Land	0.913	0.936	0.955					
Polar, Ocean	0.922	0.959	0.971					
Polar, Land	0.869	0.943	0.978					
Global, Snow/Ice	0.809	0.926	0.821					
NIGHTTIME								
Nonpolar, Ocean	0.927	0.947	0.976					
Nonpolar, Land	0.906	0.914	1.000*					
Polar, Ocean	0.823	0.912	0.945*					
Polar, Land	0.938	0.915	no data					
Global, Snow/Ice	0.873	0.876	0.814					
* computed with fewer than 100 data points								

The correct phase is identified by all three imagers over 90% of the time in most

AVHRR FC values are typically within 2-3% of the MODIS and VIIRS values.

There is a bias towards ice clouds for "twilight" conditions, i.e., 82° < solar zenith angle $< 90^{\circ}$ (not shown)

Cloud top altitude (CTA) differences (km, imager minus CALIOP) were computed as a function of thermodynamic phase

(water/ice), solar zenith angle (day/night), surface type (snow/ice-free, snow/ice-covered), and cloud opacity (non-opaque,

	ICE CLOUDS NON-OPAQUE							ICE CLOUDS OPAQUE						
CTA BIASES, RMS DIFFERENCES, [km]							CTA BIASES, RMS DIFFERENCES, [km]							
	AVHRR MODIS		VIIRS			AVHRR		MODIS		VIIRS				
	Bias	RMSD	Bias	RMSD	Bias	RMSD		Bias	RMSD	Bias	RMSD	Bias	RMSD	
DAYTIME							l.							
Global, Snow/Ice-Free	-2.94	3.89	-2.24	3.51	-1.05*	2.08*	l	-1.29	2.04	-0.90	1.91	-0.98	1.52	
obal, Snow/Ice-Covered	-1.58	3.73	-1.76	3.08	-1.03*	1.37*		-0.78	2.13	-0.92	2.06	0.34*	0.60*	
NIGHTTIME														
Global, Snow/Ice-Free	-1.60	3.16	-0.53	2.07	-0.49	1.78		-1.23	2.09	-0.77	1.80	-1.48	1.89	
obal, Snow/Ice-Covered	-0.72	3.66	-0.92	2.62	-0.33*	1.98*		-1.41	2.29	-1.07	1.80	1.13*	1.38*	
AVHRR	,		MODIS			VIIRS								
	600 600 600 600 600 600 600 600					1245 1245 1171 1176 011 011 011 011 011 011 011 011 011 01	5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	AVHRR MODIS surface channe The nig 1.6 km row), a daytime Retriev for all differen lower th	R retrieva 5 and 5, possib 4. Biases shttime al 1 of CALI as oppose e algorith als for op three in nees for han for n	Is show VIIRS of ly due to over snow gorithm r OP for med to wi m. baque ice hagers (bo opaque of opaque on	larger bi wer sno the lack v/ice are : etrieves C on-opaqu thin 3 k are with ottom rov cloud an e clouds.	iases than wr/ice-free of a CO ₂ similar. TA within ie ice (top m for the in 1.5 km w). RMS e 1-2 km	

Summary

Cloud property retrievals from imagers such as AVHRR, Aqua-MODIS, and VIIRS are being validated with A-Train sensors such as CALIOP and AMSR-E.

Water cloud top altitudes are retrieved to within 400 m of CALIOP values. Opaque ice cloud tops are retrieved to within 1 km. CTA biases are generally smaller for opaque than non-opaque clouds.

Nighttime optical depths and IWP compare well with CALIOP. Increased surface reflection causes overestimates over snow/ice surfaces during the day. IR-only techniques can help reduce daytime biases.

Daytime LWP retrievals for non-precipitating clouds are biased by less than 6 g m⁻² compared to AMSR-E microwave retrievals and show moderate to high correlation.

AVHRR retrievals are nearly as accurate as MODIS and VIIRS retrievals in many cases.

Validation for VIIRS will be ongoing as the record becomes more extensive.