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Motivations and Research Questions

® Downwelling longwave flux (DLWV) is an important energy
budget parameter in the Arctic.

® Sea ice (Francis et al. 2005)
® Greenland Ice sheet surface melt (Bennartz et al,, 2013)
® Changing Arctic clouds and DLWV (Francis and Hunter, 2007)

® Variability in DLW due to clouds, temperature and
atmospheric gases at many scales.

® Surface observations can measure DLWV well, but network
IS sparse.

® Surface observations should be combined with reanalyses,
but reanalyses must be validated.

How well do reanalyses represent DLW at various scales?

How can gridded data be compared to point observations?
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e Unique environment



Surface Observations

Two independent observations of DLW from Summit:
|) Derived from infrared radiances measured by the ICECAPS Atmospheric
Emitted Radiance Interferometer (AERI) (Cox et al. 2012).

2) Broadband measurements from a pyrgeometer (PIR).

Time period:
July 2010 through August 2012 (26 months)

Temporal resolution:
3-hour averages

Missing data:
5.5% missing from AERI
0.7% missing from PIR o
No overlapping data gaps. i

AERI| missing data filled with PIR as a proxy

PIR (photo: NOAA/ESRL/GMD)
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Data Comparison - Surf. Obs vs ERA-|

represents DLCSF very well
—J» underestimates thick clouds

overestimates frequency intermediate thicknesses and clear-sky

DLASF DLCSF DLCRF
. . 10 : : 10 — .
a) All Months b) All Months [ c) All Months
Surf. Obs. — |
M 0 - . : 0 : .
100 200 300 100 200 300 0 50 100
DLASF [W m ] DLCSF [W m ] DLCRF [W m ]
DLASF | DLCSF | DLCRF
Mean Error -7.5 0.9 -8.4
O 25 6 24
r 0.80 0.97 0.46
ERA-Interim




Wavelet Analysis

Time-Frequency signal decomposition

Spectrum
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Wavelet Analysis

a) 1s Time Series of the A & C notes
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Wavelet Analysis
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The time series can be reconstructed
partially for a set of scales. The
example here shows the reconstruction

of the diurnal scale.
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I1. Average in Time

Wavelet power from selected times
can be averaged together. The average
of all the wavelet power through time

1s the same as the Fourier Transform
of the time series smoothed by the
wavelet. The example here 1s the
average wavelet power in March 2012.

Period [Days] Time [Months beg. 2010]



Wavelet
Analysis of
Surface
Observations

Wavelet Power
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Seasonal variability
is complicated; long time

x 10 SCales.
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Wavelet Analysis - Evaluation of ERA-Interim
Scale = | day

Scale = | day
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Evaluation of ERA-Interim
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Surface observations and ERA-Interim show low correlation at time
scales less than 4 days; Point observations versus grid cell.

DLCSF is well represented.

DLASF is biased low. (Underestimation of thick clouds;
overestimation thin)

Semi-annual and annual time scales differ a lot.
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Evaluation of
ERA-Interim

Summit Station is located

is a transition zone between

low DLCRF to the North
and high DLCRF to the
West.

Pattern is most complex in
autumn when ERA-I exhibits
competing biases in cloud
variability at different time
scales.

a) All Months

DLCRF [W m ]
10 20 30 40 50 60

d) Autumn (SON)
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Conclusions

Wavelet analysis is useful for:
|) Evaluating reanalysis performance
and
2) Comparison of gridded data sets with point locations.

® DLW in ERA-Interim is well represented for time periods greater
than about 4 days.

® ERA-Interim under estimates thick clouds and over estimates thin
clouds (cloud generation processes).

® Wavelet analysis illustrates a complicated picture of how time scales
of variability vary with season.

® Summit Station is situated in a transition zone of cloud variability.
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Wavelet Power (sfc obs)
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