Downwelling longwave flux over Summit, Greenland, 2010-2012:

Analysis of surface observations and evaluation of ERA-Interim using wavelets

Christopher J. Cox^{1,2*}, Von P. Walden³, Gilbert P. Compo², Penny M. Rowe¹, Matthew D. Shupe², and Konrad Steffen⁴

¹ University of Idaho, Moscow, Idaho ² CIRES, Univ. of Colorado, NOAA/ESRL, Boulder, Colorado ³ Dept. of Civil and Environmental Research, Washington State University, Pullman, Washington ⁴ Swiss Federal Institute for Snow and Landscape Research, Zürich, Switzerland

IRF

University of Idaho

Motivations and Research Questions

- Downwelling longwave flux (DLW) is an important energy budget parameter in the Arctic.
 - Sea ice (Francis et al. 2005)
 - Greenland Ice sheet surface melt (Bennartz et al., 2013)
 - Changing Arctic clouds and DLW (Francis and Hunter, 2007)
- Variability in DLW due to clouds, temperature and atmospheric gases at many scales.
- Surface observations can measure DLW well, but network is sparse.
- Surface observations should be combined with reanalyses, but reanalyses must be validated.

How well do reanalyses represent DLW at various scales? How can gridded data be compared to point observations?

Downwelling Longwave Flux (DLW)

© 2007 Thomson Higher Education

ICECAPS

RADIOSONDE LIFE CYCLE

PROBING GREENLAND'S ATMOSPHERE

Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit

Summit Station, Greenland

ERA-Interim

Validate ECMWF Interim Reanalysis 3-hour forecasts of DLW 0.75° grid

X Summit: 72N, 38W, 3200 m (10500 ft)

<u>Good location for</u> <u>Reanalysis Validation</u>

- Ground-observations
 - ICECAPS
 - NOAA
- Homogeneous terrain and surface type
- Distant from assimilation locations
- Unique environment

Surface Observations

Two independent observations of DLW from Summit:

- I) Derived from infrared radiances measured by the ICECAPS Atmospheric Emitted Radiance Interferometer (AERI) (Cox et al. 2012).
- 2) Broadband measurements from a pyrgeometer (PIR).

Time period: July 2010 through August 2012 (26 months)

Temporal resolution: 3-hour averages

Missing data: 5.5% missing from AERI 0.7% missing from PIR No overlapping data gaps.

AERI missing data filled with PIR as a proxy

 $PIR \hspace{0.1 cm} (Photo: NOAA/ESRL/GMD)$

Data Comparison - Surf. Obs vs ERA-I

	DLASF	DLCSF	DLCRF
Mean Error	-7.5	0.9	-8.4
σ	25	6	24
r	0.80	0.97	0.46

ERA-Interim

- represents DLCSF very well
- underestimates thick clouds
 - overestimates frequency intermediate thicknesses and clear-sky

Wavelet Analysis

Time-Frequency signal decomposition

Torrence and Compo (1998)

Wavelet Analysis

Wavelet Analysis

Wavelet Analysis of Surface Observations

Wavelet Analysis of Surface Observations

Seasonal variability is complicated; long time scales.

Wavelet Analysis of Surface Observations

Evaluation of ERA-Interim

Surface observations and ERA-Interim show low correlation at time scales less than 4 days; Point observations versus grid cell.

DLCSF is well represented.

DLASF is biased low. (Underestimation of thick clouds; overestimation thin)

Semi-annual and annual time scales differ a lot.

Evaluation of ERA-Interim

Most seasons exhibit similar results.

I) Lack of correlation; small times.

- 2) DLCSF is well represented.
- 3) DLASF is biased low.

Bias is independent of time scale:

- I) Cloud generation
- 2) Position of air masses

Summer DLCSF varies diurnally

Autumn shows two large peaks at about one week and one month.

Evaluation of ERA-Interim

Summit Station is located is a transition zone between low DLCRF to the North and high DLCRF to the West.

Pattern is most complex in autumn when ERA-I exhibits competing biases in cloud variability at different time scales.

Conclusions

Wavelet analysis is useful for:

I) Evaluating reanalysis performance

and

2) Comparison of gridded data sets with point locations.

- DLW in ERA-Interim is well represented for time periods greater than about 4 days.
- ERA-Interim under estimates thick clouds and over estimates thin clouds (cloud generation processes).
- Wavelet analysis illustrates a complicated picture of how time scales of variability vary with season.
- Summit Station is situated in a transition zone of cloud variability.

Thanks!

References

Cox, C.J., V.P. Walden, G. Compo, P.M. Rowe, M.D. Shupe and K. Steffen, 2014: Downwelling longwave flux at Summit, Greenland, 2010-2012: Analysis of surface-based observations and evaluation of ERA-Interim using wavelets, *J. Geophys. Res.*, submitted.

Bennartz, R., M.D. Shupe, D.D. Turner, V.P. Walden, K. Steffen, C.J. Cox, M.S. Kulie, N.B. Miller, and C. Pettersen, 2013: The intricate role of clouds in the Arctic surface energy budget: A look at the recent Greenland surface melting event, *Nature*, **496**, 83-86.

Cox, C.J., V.P. Walden, and P.M. Rowe, 2012: A comparison of the atmospheric conditions at Eureka, Canada, and Barrow, Alaska (2006-2008), J. Geophys. Res., 117, doi: 10.1029/2011JD017164.

Francis, J. and E. Hunter, 2007: Changes in the fabric of the Arctic's greenhouse blanket, *Environ*. Res. Lett., 2, doi: 10.1088/1748-9326/2/4/045011.

Francis J., E. Hunter, J.R. Key, and X.Wang, 2005: Clues to variability in Arctic minimum sea i<mark>ce ex</mark>tent Geophys. Res. Lett., **32**, doi: 10.1029/2005GL024376.

Torrence, C. and G.P. Compo, 1998: A practical guide for wavelet analysis, *Bull. Amer. Meteor. Soc.*, 79, 61-78.

ARM mospheric Radiation Measurement Thanks to ...

Nate Miller, Dave Turner, Jeff Hicke, John Abatzoglou, Christopher Torrence, Claire Pettersen

Wavelet Power (sfc obs)

