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1.	 Introduction

Microwave radar and radiometers greatly facili-
tate observations of cloud processes. Cirrus clouds 
are predominantly comprised of solid ice hydro-
meteors. Unlike with liquid water, ice particles are 
solid, and thus may form many different shapes. 
Small changes in particle shape can have a great 
impact on overall scattering behavior, as hydrome-
teor size is of the same order of magnitude as the 
wavelength of microwave radiation.

Many studies have modeled ice particles using 
idealized particle shapes, such as spheres, oblate 
and prolate ellipsoids, hexagonal plates, sector 
snowflakes, dendrites, and bullet rosettes. These 
shapes generally possess one or more degrees of 
symmetry. However, these idealized morphologies 
match only a relatively small fraction of observed 
particles [Korolev and Isaac 2003]. Prior field cam-
paigns have indicated that ice crystals are more 
commonly-observed to be comprised of aggre-
gates of smaller crystals [Westbrook et al. 2004], 
and attempts to approximate these aggregates by 
using simpler particles along with any form of effec-
tive medium approximation provides poor results. 
For example, Kim [2006] used the discrete dipole 
approximation to compute single scattering proper-
ties of simple columnar aggregates and established 
that Mie theory did not adequately predict sin-
gle-scattering properties, such as asymmetry factor 
(g), scattering (Csca) and absorption cross-sections 
(Cabs) for size parameters greater than 2.5. Here, 
size parameter is defined as χ=2π·aeff /λ, where λ 
is the wavelength of incident light, and aeff is the 
effective radius of a given particle. Effective radi-
us is defined as the radius of an equivalent solid 
ice-volume sphere. 

Aggregate formulations have been proposed 
using bullet rosettes [Westbrook et al. 2006; Nowell 
et al. 2013], planar dendritic snowflakes [Petty and 

Huang 2010], stellar-type crystals [Botta et al. 2011] 
and spheres [Maruyama and Fujiyoshi 2005]. Giv-
en the complexity of aggregate flakes, the discrete 
dipole approximation [Draine and Flatau 2012] and 
Rayleigh-Gans approximation [Hogan and West-
brook 2014] are commonly used. Significant devi-
ations from T-matrix theory using a Maxwell-Gar-
nett and Sihvola effective medium approximations 
[Maxwell Garnett 1904; Bohren and Huffman 1983; 
Sihvola 1989] was observed in Petty and Huang 
[2010], Honeyager [2013] and Nowell et al. [2013]. 
The largest deviations were observed in the differ-
ential scattering cross-section at exact backscatter 
direction (herein defined as backscatter), where 
the differences over different particle morpholo-
gies (dendrites, aggregates, rosettes) and solution 
methods (DDA, T-matrix) varied by up to several 
orders of magnitude [Nowell et al. 2013; Honeyager 
2013; Tyynelä et al. 2011; Petty and Huang 2010]. 
As the differential backscatter cross-section over a 
particle ensemble is used in the radar reflectivity 
relation, accurate knowledge of backscatter is es-
sential.

These pristine flake and aggregate reconstruc-
tions are all based on observational studies that 
usually consist single- or multi-angle imagery of 
many individual particles [Garrett 2012; Hanesch 
1999; Korolev and Issac 2003], sometimes com-
bined with a measure of particle mass. These mea-
surements provide some knowledge about aspect 
ratio (AR), fractal dimension (fd) and about the mass 
/ density relationship. However, near same-mass 
aggregates with near-matching measurements of 
these above quantities still can vary considerably 
in backscatter and scattering cross-section [Nowell 
et al. 2013]. Relative uncertainty in backscatter and 
scattering cross-section were found to vary by up 
to 30%. Between different aspect-ratio aggregates, 
there was considerable overlap in single-scattering 
properties, but the relative uncertainty increased to 
near an order of magnitude. It should also be noted 
that these methods attempt to model aggregates 
based solely on knowledge of surface features + 
overall mass. There are few constraints on the ‘inte-
rior’ of these particles, which increases uncertainty 
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about the physicality of such results.
In this paper, we examine how backscatter is 

impacted by surface and interior features. Aggre-
gates have a complex structure, consisting of many 
void-like regions filled with air along with a pseu-
dorandom ice structure. We develop an algorithm 
to determine the effective surface area and volume 
of these particles, and further use this algorithm to 
separate the relative contributions of interior versus 
exterior structural features on the particle’s overall 
single-scattering properties. As the interior struc-
ture is hard to measure, we use this approach to 
determine lower bounds of uncertainty in scattering 
behavior. 

2.	 Aggregate Database

We used Nowell [2010] and Nowell et al. [2013] 
to provide a base database of aggregates. These 
aggregates are grown from chains of 6-bullet ro-
settes (Figure 2). In cirrus clouds, bullet rosettes 
tend to have maximal dimensions between 200 
and 800 microns [Pruppacher and Klett 1997] and 
follow a range of size-density relationships. In this 
study, the “bullets” in the rosettes are assumed to 
be columns made of equal-sized cubes with orthog-
onally oriented columns that share the same single 
cube in the center (Figure 1). As the size-density 
relationship for bullet rosettes in Heymsfield et al. 
[2002] closely matched the calculated densities of 
our base rosettes with maximum dimensions of 200 
and 400 microns, we used these as the base ro-
settes for aggregate generation (Figure 3). Three 
cases were considered when constructing aggre-
gates: 200 micron base rosettes only, 400 micron 
base rosettes, and aggregates constructed using 
both rosette sizes.

The bullet rosettes are randomly-placed, with 
each subsequent bullet rosette in the chain being 
placed somewhere adjacent to the previous ro-
sette. Bullet rosettes are not allowed to intersect. 
Chains of rosettes are grown until there is no more 
room for expansion of the chain or until the chain 
reaches predefined bounds on overall particle di-
ameter. The final aggregates (example in Figure 
2) are modeled to match previous observations 
of aggregate aspect ratios, fractal dimension and 
mass-density relationship. Runs were conducted 
at 263 K at several frequencies ranging from 3 to 
183.31 GHz.

Three different aspect ratio parameterizations 

Figure 1 - A 6-bullet rosette used in aggregate con-
struction in Nowell et al. [2013].

Figure 2 - Example AR 0.6 oblate aggregate, with 
top and size views.
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are considered: spheroidal, oblate and prolate ag-
gregates. The spheroidal aggregates [Nowell 2010] 
are approximately round, with aspect ratios near 
0.8-1.0. These are based on observations from 
Magono and Nakamura [1965] and Brandes et al. 
[2007]. 557 aggregates were generated, with effec-
tive radii from 180 to 1460 um, and maximum di-
ameters from 765 to 12,585 um. Oblate aggregates 
resemble flattened spheroids, with aspect ratios 
near 0.6. These correspond to observations from 
Korolev and Issac [2003]. There are 240 oblate 
aggregates. Additionally, a new parameterization 
for prolate aggregates (similar to elongated spher-
oids) is considered to also match Korolev and Issac 
[2003], with aspect ratios also near 0.6. 180 prolate 
aggregates were generated.

Fractal dimension, df, was also constrained 
to match prior studies. Fractal dimension is a rep-
resentation of how fast the volume changes as a 
function of the total diameter. The relationship be-
tween fractal dimension, mass (or volume) and lin-
ear diameter is M=a · rdf, where M is the mass of 
the aggregate, r is the effective radius and a is a 
scaling constant [Westbrook et al. 2004]. The scal-
ing constant depends on the method used to deter-
mine the other parameters. Muramoto et al. [1993] 
used a divider method, in which only the outline of 
flake images was used in determining df. In con-
tract, Maruyama and Fujiyoshi [2005] and Ishimo-

to [2008] used a box counting method, where the 
entire filled flake image was examined. The aggre-
gates generated in this study have an outline df of 
1.29 and a full-image df of 1.75, respectively match-
ing the above definitions.

The overall size-density relationship for the 
aggregates was constrained to roughly follow the 
Brandes et al. [2007] diameter-density relation-
ship. Deviations from this relation up to 20% were 
allowed, to correspond to results from other obser-
vational studies [Magono and Nakamura 1965; Hol-
royd 1971, Muramoto et al. 1995; Fabry and Szyr-
mer 1999; Heymsfield et al. 2004]. 

For comparison, this aggregate database is 
supplemented with pristine flake results from Liu 
[2004; 2008]. The morphologies considered include 
dendrite snowflakes and sector snowflakes. These 
particles are solid. They have well-defined ice in-
teriors and exteriors, and have uniquely and clear-
ly-defined surface areas and volumes.

3.	 Single-Scattering Approximation

The single-scattering properties were calculat-
ed using the discrete dipole approximations [Draine 
1988]. The scattering, absorption and differential 
backscatter cross-sections were calculated, as 
well as the asymmetry parameter. The quantities 
were then normalized by a factor of π·aeff

2 to pro-
duce normalized cross-sections (Csca/π·aeff

2=Qsca, 
Cabs→Qabs, etc.), which are shown in Figure _. The 
ice particles are represented as an array of polariz-
able cells on a cubic lattice. The interdipole spacing 
for the aggregates is either 40 or 57.1 microns, cor-
responding to the use of either 200 or a 400 micron 
bullet rosettes as the aggregate base. This small 
interdipole spacing ensures that the DDA converg-
es. The number of dipoles used in modeling varied 
from 134 to 160,301. All calculations are done as-
suming random particle orientation.

Results are shown in Figure 4. The solid ice 
spheroid approximation is a poor fit for these ag-
gregates. Significant deviations with aggregate re-
sults are already present at χ = 1 for Qabs and Qsca. 
The aggregate results do not show the resonance 
effects commonly observed in spheroids [Zubko et 
al. 2010], as these aggregates have neither a sym-
metric nor smooth surface. Qsca for aggregates is 
larger than the solid sphere results, indicating that 
the aggregates attenuate more light by scattering 
processes. However, spheres backscatter more 

Figure 3 - Size-density relationships from Brandes 
et al. [2007], plotted against the aggregates con-
sidered in this study. Randomly generated AR 0.8 
flakes are divided into 200, 400 and 200 and 400 
um flakes as red, green and blue circles, respec-
tively. Oblate (AR 0.6) and prolate flakes are shown 
as black and pink circles, respectively.
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light than aggregates do. Aggregates absorb more 
light than equivalent-mass spheres.

Differences in aggregate aspect ratio led to 
pronounced differences in Qbk. Backscatter varies 
by up to an order of magnitude among spheroids, 
oblate and prolate aggregates. Oblate and pro-
late flakes show markedly lower backscatter than 
spheroids. Similar differences are also observed in 
Qsca, though the degree of difference is less pro-
nounced. Qabs and g are nearly identical for different 
aggregate morphologies.

4.	 Defining an Effective Surface

As mentioned in the previous section, there is 
a large variation in backscatter cross-section even 
when particles are constrained by aspect ratio, 

and AR 0.6 oblate and prolate aggregates exhibit 
lower values of backscatter when compared with 
near-spheroidal AR 0.8 aggregates. The aggre-
gates are composed of bullet rosettes and contain 
a diffuse ice lattice that is heavily filled with air. As 
such, these particles have an ill-defined surface 
area and volume. As these particles have features 
that vary at scales smaller than microwave radar 
wavelengths, it would be convenient to define a 
consistent ‘effective volume’ and ‘effective surface 
area’ for each hydrometeor.

We used a Voronoi cell-based approach to de-
fine these quantities. The term ‘effective’ in both 
effective volume and surface area is used in the 
same sense as when used in determining an effec-
tive dielectric for Mie and T-Matrix-based computa-
tions. Voronoi cells [Rycroft 2009] are constructed 

Figure 4 - Plot of the single-scattering properties for aggregate flakes and Liu [2008] snowflakes. Different 
flake morphologies are shown in different colors. Solid spheres at 36.5 GHz are shown as the solid line.
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around each of the ice lattice points in our flakes. 
The volume contained within each specific cell 
is the region of space that is closest to a specific 
ice lattice point. We use this approach for several 
reasons: 1) the surface of all of the Voronoi cells 
has features that vary on the micron and millimeter 
scale, 2) the resultant surface follows the contours 
of the base aggregate that it is generated from, un-
like in a convex ellipsoid of circumscribing sphere-
based approach [Honeyager 2013] and 3) that the 
volume fraction of solid ice to total enclosed volume 
is substantially different from fice/ftotal ≈ 0. This final 
feature allows for good comparisons with effective 
dielectric medium approximations. This approach 
produces a consistent definition of effective surface 
area and volume. The surface of each aggregate is 
closed and has an easily-calculable surface area 
(Figure 6). As expected, the effective surface area 
and volume increase with increasing hydrometeor 

mass. 
The surface area (SA) to volume (V) ratio can 

be used as a measure of the surface roughness 
and complexity of each particle. For a given particle 
mass, the minimum possible ratio of SA/V occurs 
for the solid ice sphere case. For spheres, the ra-
tio then is 3/R, where R is the sphere radius. This 
minimum changes with particle size and has units 
of inverse length. For a consistent comparison of 
particles of different mass, we normalize the SA/V 
ratio of selected hydrometeors against the SA/V 
ratio of the equivalent-mass solid sphere. For this 
normalized quantity, a SA/V index of 1 corresponds 
always to a solid sphere case. All other values cor-
respond to a greater surface area for the same 
particle mass, indicating a more complex shape. 
Figure 7 shows the backscatter results for AR 0.6 
oblate and prolate aggregates, AR 0.8 aggregates, 
and select dendritic and sector snowflakes over 

Figure 5 - Expanded view of the plot of backscatter in Figure 4.
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several frequencies from 36.5 to 183.31 GHz. Each 
point is colored according to that particle’s normal-
ized SA/V ratio. Scattering cross-section results are 
visible in Figure 8. The cross-sectional results for 
a solid ice sphere at 36.5 GHz are plotted for ref-
erence. For all particle masses, the results show a 
consistent and well-defined trend where a greater 
surface complexity leads to a lower backscatter. 
This is expected physically, as a more complex sur-
face is less likely to backscatter radiation, but this 
contouring of points quantifies this relationship. The 
results in Figure 7 may be compared against those 
in Figure 5, which only filters flakes based on as-
pect ratio.

5.	 Interior Perturbations

The same Voronoi technique can be applied to 
the interior of a hydrometeor. We separated each 
particle into surface and interior components, with 
the interior defined as all lattice sites further than 
two Voronoi cells away from the Voronoi-defined 
surface of the particle (Figure 9). Hydrometeor im-
aging studies provide no knowledge of particle in-
teriors, other than an occasional rough estimate of 
particle mass. So, we examine sensitivity to internal 
features by perturbing the particle interior. Overall 
particle mass is preserved, while the interior lattice 
sites are all randomized. This represents a situa-
tion where all information of the particle interior has 
been lost, yet it preserves the large number of in-
ternal reflections of light through the ice / void lat-
tice. This internal scattering is neglected in many 
non-DDA formulations that use an effective medium 
approximation [Draine and Goodman 1993; Kim 
2006; Zubko et al. 2010].

AR 0.6 oblate aggregates at 36.5, 89 and 
183.31 GHz were perturbed this way. The struc-
tured interior (original) vs. unstructured (perturbed) 
comparison is shown in Figure 10. Each original 
and perturbed point pair has the same mass, so 
these points all lie on the same vertical line. The 
percent change in backscatter varied based on 
frequency. Worst case results occurred at 183.31 
GHz, where the mean percent difference between 
perturbed and original results was under 20%. For 
lower frequencies, such as 36.5 GHz, the average 
percent difference was 12%. The mean percent 
change in scattering cross-section was under 2%. 
The randomized interior cases did have a consis-
tently lower backscatter than the initial aggregates. 
The randomized interior lattice varies random-
ly on the scale on a single dipole spacing, so an 
accurate backscatter calculation is expected to be 
somewhat unreliable at this resolution [Zubko et al. 
2010]. Overall, these results show that knowledge 
of interior structure is less critical than accurately 
representing particle surface, and that with surface 
area, volume and mass, it is possible to predict the 
microwave backscatter and other cross-sections 
with good accuracy.

Figure 6 - Example oblate aggregate, showing the 
underlying filled ice dipoles (above) and the Vor-
onoi-determined surface (below). The initial flake 
has an ill-defined surface area and volume. It lacks 
a clearly-defined interior and exterior. The Voronoi 
surface has none of these limitations.
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6.	 Conclusions and Further Work

Three related aggregate models were used to 
examine trends in single-scattering properties as a 
function of aspect ratio, mass, frequency and the 
effects of interior / exterior perturbations on the 
aggregate lattice structure. Ice crystals with the 
same mass can vary in backscatter by up to an 
order of magnitude. The cause of this variation is 
particle shape (morphology). By constraining flake 
populations based on aspect ratio, it is possible to 
lower the uncertainty inherent in backscatter and 
scattering cross sections. Oblate and prolate (AR 
0.6) aggregates show consistently lower backscat-
ter than more spheroidal (AR 0.8-0.9) aggregates. 
This is caused by the complexity of the aggregate 

Figure 7 - Backscatter plot (refer to Figure 5), but coloring based on Voronoi surface area to volume ratio, 
normalized against that of a same-mass sphere. Key: AR 0.8 spheroids (squares), AR 0.6 oblate (circles), 
prolate spheroids (triangles), dendrites (downward-facing triangles), and sector snowflakes (diamonds).

Figure 8 - Scattering cross-section, colored in the 
same manner as Figure 7.
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surface, and deviations from spherical shape lead 
to lower backscatter. We were able to quantify this 
by defining an effective surface area and volume 
using a Voronoi cell-based method, which when 
combined with aspect ratio can lower uncertainty in 
backscatter to within a few percent. Stability testing 
was performed by perturbing aggregate interiors, 
and interior scattering effects had lower magnitude 
and thus a smaller contribution to overall backscat-
ter relative to surface-based effects.

These results are important because they val-
idate the feasibility of modeling snowflakes based 
on observational studies. A measure of particle sur-
face area and mass is recommended in future field 
campaigns, in addition to the existing measures 
of aspect ratio, fractal dimension and size-density 
relation. This study finds a minimum uncertainty in 
backscatter of around 12% and a minimum uncer-
tainty of 2% in scattering cross-section for mod-
eled results. Further anticipated work will involve 
comparisons with the T-matrix and Rayleigh-Gans 
methods and effective medium approximation-de-
rived results, as well as the effects of particle align-

ment on microwave remote sensing.
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