

Advancements in GOES-R/JPSS Aviation Research and Operational Use

Wayne Feltz, K. Bedka, J. R. Mecikalski, M. J. Pavolonis, B. Pierce, K. Pryor, W. L. Smith, and A. Wimmers Co-Chair GOES-R Aviation Algorithm Working Group Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin – Madison, U. S. A.

GOES-R Aviation Algorithm Working Group

AWG Aviation Team Co-Chairs : Ken Pryor, Wayne Feltz Funded by GOES-R Program Office

- Convective Initiation
 - John Mecikalski (Lead)
 - Wayne MacKenzie
 - Kris Bedka

Enhanced-V/Overshooting top detection

- Kristopher Bedka (Lead)
- Jason Brunner
- Wayne Feltz
- Turbulence
 - Anthony Wimmers (Lead)
 - Wayne Feltz
- Volcanic ash -> Baseline
 - Mike Pavolonis (Lead)
 - Justin Sieglaff (Support)

 $\succ SO_2$

- Mike Pavolonis (Lead)
- Andrew Parker (Support)
- > Visibility
 - Brad Pierce (Lead)
 - Wayne Feltz
- Aircraft Icing
 - Bill Smith, Jr. (Lead)
- Fog/Low Cloud
 - Mike Pavolonis (Lead)
 - Corey Calvert (Support)

Algorithm Research to Operations Process

GOES-R Risk Reduction Exploratory Algorithm Development

AWG Algorithm Candidate Development & Intercomparison

AWG Algorithm Selection and Proving Ground Demonstration

> Operational Environment

GOES-R Software Development Process

GOES-R Volcanic Ash

Low Cloud, Fog, and Cloud Type

Aborted Landing! July 26, 00:46 UTC

3.9–11 micron BTD

MVFR Probability

Cloud Type

The GOES-R cloud type product indicates that supercooled liquid water clouds are present over Barrow and pockets of supercooled liquid water can be found near Deadhorse and Kaktovik. Supercooled liquid water clouds can cause aircraft icing.

Deadhor

Kaktov

Aqua-MODIS (July 05, 2010, 22:25 UTC)

GOES-R Cloud Top Phase

GOES-R Cloud Type

Ice

Ice

layered

 Icing reports are denoted by the filled circles. •All pilot reported occurrences of aircraft icing are coincident with supercooled liquid water or mixed phase clouds.

July 20, 2011 (20:52 UTC)

MVFR Probability

IFR Probability

Location of higher MVFR and IFR probability agree well with surface observations of ceiling

July 20, 2011 (20:52 UTC)

Cloud Type

GOES Visible Image

It is difficult to infer MVFR and IFR conditions (away from surface observations) just using GOES visible imagery.

GOES-R Overshooting-Top

GOES Objective Overshooting-top Detection

GOES Proxy Overshooting Top (OT) and Decision Support Detection

2010

Turbulence Risk: 20100413 at 0245 UTC

Lightning Risk: 20100413 at 0245 UTC

Lightning Risk within 10 km of overshooting top (%)

35

> 40

AMS ARAM 2011

40

25

• Overshooting tops (OTs) are the product of deep convective storm updrafts with sufficient strength to rise above the storms' equilibrium level and penetrate into the lower stratosphere

 OTs appear as small clusters of very cold pixels relative to the surrounding thunderstorm anvil
 Infrared (IR) temperature gradients (i.e. texture) are combined with NWP information to accurately detect OTs during day/night using current and future satellite sensors (Bedka et al. 2010)

• Detection product being evaluated within the 2010 SPC Spring Experiment via the GOES-R Proving Ground and the NCAR Global Atmospheric Turbulence Decision Support System for Aviation

OT Detection Method	OT Pixel FAR	ABI OT Detection Product Maximum Acceptable FAR Requirement	OT Top Region POD	Number of OT Detection Pixels Along CloudSat Track
IR-Texture (Applied to Synthetic ABI)	16.1%	25%	74.6%	940 (114 Global OT Events)
IR-Texture (Applied to Current GOES and SEVIRI)	18.3%	N/A	57.6%	252 <i>(59 OT Events)</i>
WV-IR BT Diff > 0 K (Currently Operational At Aviation Weather Center)	81.2%	25%	99.1%	15079 (114 Global OT Events)

GOES-R Proving Ground

SPoRT – Huntsville, AL GLM Lightning Flash Density

AFC – Anchorage, AK Volcanic Ash Product

NHC – Miami, FL Rapid Intensification Index

GOES-R and NWS

- The PGEB and the National Weather Service have identified a set of GOES-R Products as "Warning Related" products which directly contribute to NWS Warning Mission (Save Lives & Property).
- The GOES-R PG activities will first focus on the AWG version of these algorithms/products for demonstration due to their classification.
- The Aviation Products are:

Volcanic Ash: Det. and Height Aircraft lcing Threat Convective Initiation Enhanced "V"/Overshooting Top Detection Low Cloud and Fog SO2 Detection

2011 Demonstrations

- Storm Prediction Center (SPC) and NOAA's Hazardous Weather Testbed (HWT)
- National Hurricane Center (NHC)
- Aviation
 - Aviation Weather Center (AWC)
 - Alaska Aviation Weather Unit (AAWU)
 - NWS Regions
- High Latitude Testbed and Alaska Region
- WFO-level demonstrations (MKX, BOU, CYS...)

UW-CIMSS and ASPB GOES-R Products Baseline & Option 2

Demonstration Product (contacts)	Category	PG Testbed Activity
Cloud and Moisture Imagery (WRF ARW simulated) (Schmit/Feltz) - 2010	Baseline	HWT, OPC, HPC -Added visible channel -Alaska and Hawaii domains in future?
UW Convective Initiation (Sieglaff/Feltz) - 2009	Option 2 GIMPAP funded proxy -> UAH CI	HWT, AWC, PAC-Hawaii -GOES-W now available -Ice mask (no CI detection possible)
Overshooting-Top /Enhanced-V (Bedka/Feltz) - 2010	Option 2	HWT, OPC, AWC - Optimal in RSO but limited
Hurricane Intensity Estimate (Velden/Olander) - 2010	Baseline	NHC
Fire Detection (Schmidt) - 2010	Baseline	HWT - New intensity field

UW-CIMSS and ASPB GOES-R Products Baseline & Option 2

Demonstration Product (contacts)	Category	PG Testbed Activity
Volcanic Ash location/height/loading (Pavolonis) - 2010	Baseline	HLT-Alaska/AAWU, AWC, PAC-Hawaii - MODIS/AVHRR derived
SO2 (Pavolonis) – 2011	Option 2	HLT-Alaska, AAWU/AAWU, AWC, PAC-Hawaii - MODIS/AVHRR derived
Low cloud/Fog (Pavolonis) - 2011	Option 2	HLT-Alaska/AAWU, AWC - GOES/MODIS/AVHRR
Cloud phase/typing (Pavolonis) - 2011	Baseline	OPC, HLT-Alaska/AAWU - GOES/MODIS/AVHRR
Cloud Height/temperature/mask (Heidinger) – 2011	Baseline	OPC, HLT-Alaska/AAWU - GOES/MODIS/AVHRR
Total Precipitable water/Atmospheric Stability (Schmit) - 2012	Baseline	OPC, PAC, HWT (delayed until 2012)

Aviation Weather

- Aviation Weather Center (Kansas City) New GOES-R hire
 - Products
 - Convective Initiation and Nearcasting
 - Volcanic Ash: Detection and Height; SO2 Detection
 - Aircraft Icing Threat
 - Low Cloud and Fog
 - WRF Lightning Threat
- AK Aviation Weather Unit (Anchorage)
 - Products
 - Volcanic Ash: Detection and Height; SO2 Detection
 - Low Cloud and Fog
 - Cloud Top Height
- NWS Regions
 - Starting with WR WFOs and CWSUs followed by expanding to other regions.

Ongoing Demonstrations 2011 Aviation Weather Experiment

Location

-Aviation Weather Center, Kansas City, KS

Focus

-Aviation

Products

-Low Cloud and Fog -SO2 Detection

-Volcanic Ash Detection and Height

-Aircraft Icing Threat
-UW Convective Initiation
-Nearcasting Model
Duration
-1 Jun – 31 Oct (TBD) 2011

Ongoing Demonstrations 2011 High Latitude and Arctic Experiment

>> Home >> GOES-R Proving Ground

UW/CIMSS NOAA Proving Ground Testbed Decision Support Products

Resources	ethennee <u>reput</u> retring creana recibed Decision cuppert reducio									
Proving Ground Products List (Table)	Description	Contact	Training	Quicklooks	Validation	Satellite Platform	Testbed	Forecaster Comments		AWIPS Setup
CIMSS NOAA Testbed Support Products CIRA Products SPoRT Air Quality (UMBC)	Convective Initiation(UWCI)	<u>Wayne</u> Feltz	<u>UWCI (Visit)</u> <u>UWCI (ppt)</u>	Convective	Convective	GOES Imager	HWT, AWC, PR	<u>Link</u>	Product Variant	
	Overshooting Top (OTTC) and	<u>Wayne</u> Feltz Kris	OTTC (PPT) OTTC and Enhanced-V	Decision Support	Convective Initiation Products	GOES Imager, MODIS/AVHRR	HWT, HLT	Link	AWG Proxy	Instructions
Meetings and Presentations Teleconferences	Enhanced-V	Bedka	(Visit)							
Proving Ground Partners GOES-R Advanced Baseline	WRF Simulated Radiances (ABI Simulated Radiances)	<u>Justin</u> Sieglaff	WRF (PDF)	<u>WRF</u>			нwт		Risk Reduction	
Imager (ABI) Bands	WildFire ABBA (WFABBA)	<u>Chris</u> Schmidt				GOES Imager	нwт		AWG Proxy	
GOES-R ABI Sample Product Table GOES-R ABI Weighting	NearCast	<u>Ralph</u> Petersen	<u>UW</u> <u>NearCasting</u> (<u>VISIT)</u>	<u>NearCast</u>		GOES Imager, GOES Sounder	нwт	<u>Link</u>	Risk Reduction	Instructions
Function Examples	Volcanic Ash	<u>Mike</u> Pavolonis	<u>Ash (ppt)</u> Ash (Visit)			MODIS, SEVIRI	AAWU, AWC, HLT, PR		AWG Proxy	Instructions
	Low Clouds/Fog	<u>Mike</u> Pavolonis	Fog(Training) Quick Facts			MODIS-Alaska, GOES-CONUS	AAWU, AWC, HLT		AWG Proxy	Instructions
	Cloud Type	<u>Mike</u> Pavolonis	TBD			MODIS-Alaska, GOES-CONUS	AAWU, HLT, OPC		AWG Proxy	<u>See</u> <u>Contact</u>
	SO ₂	<u>Mike</u> Pavolonis	TBD			MODIS	AAWU, AWC		AWG Proxy	<u>See</u> Contact
	T									

Realtime Access

Testbed Legend

http://cimss.ssec.wisc.edu/goes_r/proving-ground/SPC/SPC.html

UW/CIMSS Tropical Proving Ground Decision Support Products for the National Hurricane Center

Tropical Overshooting Tops Sarah Monette TOT Tropical Overshooting Tops SEVIRI AWG Proxy Hurricane Intensity Estimation (HIE) Tim Olander HIE SEVIRI AWG Proxy	Description	Contact	Training Data Page V		Validation Satellite Platform		Product Type	
A I I I I I I I I I I I I I I I I I I I	Tropical Overshooting Tops		<u>тот</u>			SEVIRI	AWG Proxy	
		<u>Tim Olander</u>		HIE		SEVIRI	AWG Proxy	

Instructions Available Online

http://cimss.ssec.wisc.edu/~jordang/awips-modis/

4 37 . 10 1 CC 400 1

GOES-R Volcanic Ash Product Evaluation

- The GOES-R ash cloud height, mass loading, and effective particle radius products developed by the AWG were made available to the NWS AK Region in February 2011 using MODIS
- Three live training sessions (conducted by M. Pavolonis and J. Sieglaff) were conducted between March 9 and April 1, 2011 (a total of 18 people from the NWS AK Region participated)
- Two interesting cases have been observed since the training was conducted (AAWU SOO has provided

Marco Fulle - www.stromboli.net

April 7, 2011: Kizimen and Sheveluch Volcanic Ash Clouds

Feedback from Nathan Eckstein (AAWU SOO): "The (GOES-R) ash heights from Kizimen were in good agreement, not only with Tokyo VAAC who was doing the forecasting, but also with the wind analysis from 500mb wind."

Nathan also commented about the potential uses for the effective radius product and how the products can be used to initialize HYSPLIT

Overshooting Top Detection

- The GOES-R Overshooting Top Detection (OTD) algorithm identified an overshooting top at NOAA's Hazardous Weather Testbed with the severe thunderstorm and tornado that in Springfield, MA on June 1, 2011
- The OTD singled out the most intense thunderstorm cell out of a very large storm complex over Southern and Central New England.
- At the HWT Experimental Warning Program and Convective Initiation desk the NWS forecasters were alerted to a developing severe storm with 28 minute lead time before the first tornado report.

GOES-R HWT BLOG

0	0 0	The GOES-R Proving Cround at NOAA's Hazardous Weather Testbed	
	Wireless Network Authenticatio 🛪 🙀 Heartbeat 🛪	🛛 👍 Problem loading page 🛛 😮 The GOES-R Proving Ground at 🛪 🕇	
	http://goesrhwt.blogspot.com/search?upcated-max-2011-05-16T	11%3A18%3A00-05%3A00&max-results−7 💮 🗸 🕑 🔇 🔹 penn state meteorology j	jobs Q Feedba
#	Home 💿 Most Visited 🔹 🕋 Schwerdtfeger L 🖳 SSEC FTP 👌 UW-Mad	dison Ne 😒 Storm Prediction 📋 Sports 🔹 🧰 NEWS 🔹 🧰 Weather 🐑 🧰 Rooftop Weath 🔹 😿 Wisconsin	ı Fishin 🔉 💽 Bookmar

UW-Madison CIMSS convective initiation, overshooting-top, and nearcasting update

GOES-R proxy University of Wisconsin convective initiation (UWCI), overshocting-top/enhanced-V, WRF ARW simulated data and nearcasting fields have been flowing in a smooth manner into the EFP via N-AWIPS for forecast discussion integration. UWCI did indicated individual cells developing along north-south boundary in MN yesterday afternoon (10 May 2011).

24-hour UWCI indications, overshooting-tops, and NLDN lightning data from 12 UTC 20110510 - 12 UTC

http://goesrhwt.blogspot.com/

20110511 below:

Joint Polar Satellite System User Engagement & Feedback

NPP October 25, 2011 launch

NWS- Alaska Region use DB software from CIMSS to provide feedback on: Cloud products, snow, ice, volcanic ash, aerosols Soundings

NASA-SPORT will directly engage more than 20 NOAA /NWS Weather Forecast Offices to facilitate use of NPP data and to provide feedback on VIIRS and CrIMSS products.

NRL NEXSAT – uses VIIRS Imagery and EDRs for environmental assessments.

Summary

 100% Aviation ATBDs have been delivered to GOES-R Program Office in July 2011

 Strenuous validation is required to meet specification within GOES-R Mission Requirements Document (NOAA GOES-R AWG)

• Vested interest in providing GOES-R/JPSS like products in hands of forecasters through Proving Grounds (example: Aviation Weather Center and HWT Testbed) (NOAA GOES-R/JPSS PG)

• Most of these science product requirements are being "fused" into operational venue (examples below), path to NEXGEN imperative (NASA ROSES critical!)

- Turbulence GTG-N
- Convective initiation CoSPA
- Icing CIP
- Volcanic Ash VAACs