16th Weather Squadron

Aim High ... Fly, Fight, Win

Near-Surface Turbulence Forecasting Challenges at the United States Air Force Weather Agency: Progress In Trapped Wave Forecasting

James McCormick
UCAR Associate Scientist I
Located:
16th Weather Squadron: WXP
Aviation Hazards Team
Air Force Weather Agency
Offutt AFB, Nebraska
Motivation

- **Currently:**
 - “Mountain wave and other turbulent lee event forecasting methodologies need considerable attention.” – Air Force Weather Turbulence Forecasting Summary
 - Panofsky Turbulence Index for near-surface turbulence forecasting is quite good for synoptic wind shear events, but struggles in certain situations, such as with dry thermal convection and mesoscale waves
 - Current trapped lee wave forecasting methods can be cumbersome, and the nature of the process does not account for all regions or for propagation
 - Little has been done in the way of forecasting conditions favorable for other types of trapped waves (such as gravity waves, currents, etc.)
Currently

Box Forecasting Method
(Mountain Waves)

Terrain-Induced Wave:
SE Oklahoma
21 May 2011

Aim High … Fly, Fight, Win
Approach

- Review research pertaining to simulations and observations of trapped waves
- Study trapped wave cases to find meteorological conditions likely most responsible for wave-trapping
- Use operational models to find clues that will aid in the forecasting of trapped waves – regions of enhanced turbulence probability, as well as enhanced turbulence severity
15 KM WRF Information

- Version 3.2
- Nested within 45 KM Domain
- 3DVAR Data Assimilation
- Resolution
 - Horizontal: 15 KM
 - Vertical: 56 levels
 - Grid Size: 343 x 211
- Physics Package
 - Longwave radiation: RRTM scheme
 - Shortwave radiation: Dudhia scheme
 - Cumulus Parameter Scheme: Kain-Fritsch scheme
 - Explicit scheme: WRF Single-Moment 5-class scheme
 - Planetary Boundary Layers: Yonsei University Scheme
 - Soil Model: Noah Land Surface Model

Aim High … Fly, Fight, Win
Challenges: Verification

- Nature of pilot reports
- If area is known to be turbulent, flights avoid the region
- Product-specific challenges:
 - Nocturnal wave identification
 - “Other” cloud cover can obscure evidence of trapped waves
 - Specific cause of turbulence
 - Specific level at which wave exists
 - Waves in dry atmosphere (below LCL)?
Challenges: NWP

- Limited resolution of operational models
 - Traditional measures of turbulence, such as the Richardson number, can be difficult to forecast at necessary thresholds due to vertical resolution
 - Thickness differences in upper levels
- Not every wave can be simulated in operational models–
 - Want to focus on environments favorable for waves
 - Mesoscale processes may affect local environments
“Under ordinary conditions, an upward-propagating gravity wave may encounter a level where background flow characteristics such as N or u change quickly with height. When this happens, wave reflection can occur (Nappo 2002).”

“$M^2 < 0$ implies that either stability is small or negative, or there is significant curvature in the wave-normal wind profile (Coleman et al 2009).”
Use vertical velocities within the WRF data to attempt to identify wave motions.

Contoured WRF vertical velocity
6 June 2011: Northern Nevada.
06Z 15 KM WRF valid 18Z.

Upper limit of negative vertical velocities: near 1500 meters AGL.

Wind curvature near 650 mb (~1450 m AGL)
Vertical Velocity Cross Sections: W-E Horizontal Display

Vertical Velocity (m/s)

10-Sigma layer vertical velocity plot: 06Z WRF data valid 18Z, NV

Vertical Velocity (m/s)

17-sigma layer vertical velocity plot: 06Z WRF data valid 18Z, NV

Aim High … Fly, Fight, Win
Forecast Product

- Single Layer:
 - Compute changes in wind components for each sigma layer
 - EX: $DU(5120) = UCOMP(5425) - UCOMP(4760)$
 - Layer product that will be represented by median level
 - Square DU and DV terms
 - Early Formula:
 - Add DU^2 and DV^2 terms, minimum 10 for each term
 - Updated Formula:
 - Multiply DU^2 term by DV^2 term
 - Emphasize significant changes
 - Minimum 6 for each term
 - If either term is less than 0, set entire product to 0
 - Caveat: Coarse vertical resolution in upper levels
Graphical Display:
13 June 2011 – Early Formula

“Early” formula:
7745 sigma level

Visible satellite:
1815Z

Panofsky Turbulence Index:
Valid 18Z

Pilot reports in NW Missouri:
Moderate turbulence
1806Z
1906Z

Aim High … Fly, Fight, Win
Graphical Display
19 July 2011 – Updated Formula

Aim High … Fly, Fight, Win
Vertical Profile:
DU^2*DV^2 Term

DU2DV2 Term
06 Z WRF data: Valid 18Z
21 July 2011
NE of Seattle, Washington

12 Z UIL sounding

17Z visible satellite image
Data Display:

8 July 2011 - Utah

Visible satellite: 1530Z

WRF data: Valid 15Z
DU^2*DV^2 terms:
5475-4760 layer: 147.0
5120-4405 layer: 244.3

Visible satellite: 1830Z

WRF data: Valid 18Z
DU^2*DV^2 Terms
5475 – 4760 layer: 4.5
5120 – 4405 layer: 6.7

Aim High … Fly, Fight, Win
Maximum WRF data calculated DU2*DV2 term : 11.3
12Z TOP sounding calculated DU2*DV2 term: 73.7

Most favored region for reflecting layer on 12Z
Topeka sounding

Aim High ... Fly, Fight, Win
Identified 24 trapped waves using visible satellite imagery

Reviewed WRF data: found evidence of reflecting layer meeting our criteria within WRF data in 21 cases

For missed cases: found evidence of reflecting layer meeting our criteria within nearby sounding data

“Missed” cases primarily tended to appear on imagery for short periods of time (< 1 hour) and over smaller geographical areas

“Missed” waves more likely the result of mesoscale influences
Summary/Conclusions

- 15 KM WRF shows ability to accurately and operationally forecast specific areas where reflecting layers are preferred.
- A combination of u-component change and v-component change can be used to display a likelihood that a reflecting layer will be present.
- Not all reflecting layers are large-scale features in the atmosphere, particularly within the mountains.
- Mesoscale features may alter a wind profile in favor of reflection when large scale conditions are unfavorable. Operational models may continue to struggle in these cases.
Future Work

- **Product Development:**
 - Multi-layer maps: Ease for user
 - Any “clues” available where events appear to be missed?
 - Account for thickness of upper sigma layers
 - Probabilistic and ensemble forecasting methodology

- **Climatology Studies**
 - Frequency of conditions favorable for reflecting layers

- **Weather Forecasting:**
 - Wave formation
 - Wave breaking
Acknowledgments

- Becky Selin, 16th WS/WXE
- Cpt. Paul Lucas, 16th WS/WXP
- Dave Keller, 16th WS/WXP
- Evan Kuchera, 16th WS/WXN
- Glenn Creighton, 16th WS/WXN
- Gordon Brooks, 16th WS/WXE
- Jeff Hamilton, 16th WS/WXN
- Scott Rentschler, 16th WS/WXN
References

Thank You!

Questions? Comments?

Author contact information:

James McCormick
James.McCormick.Ctr@offutt.af.mil