Convection-permitting ensemble simulations and Mediterranean HPEs

Benoît Vié¹
Olivier Nuissier¹
Véronique Ducrocq¹

¹Météo-France - CNRM

1 August 2011
Why do we need a convection-permitting EPS?

24h accumulated precipitation, 12 UTC 2 Nov. 2008, AROME forecast and observations

Z_{500}

925 hPa wind

925 hPa θ'_w
Why do we need a convection-permitting EPS?

- Convection-permitting, non-hydrostatic NWP models produce very realistic forecasts

- Realistic \neq Real

- Runoff forecasts are very sensitive to the rainfall forecasts, especially for small and steep mountainous watersheds

- EPSs are one method to evaluate the forecast uncertainty

24h accumulated precipitation, 12 UTC 2 Nov. 2008, AROME forecast and observations
The AROME model (late 2008)

- Non-hydrostatic
- 2.5 km horizontal grid spacing
- 41 vertical levels
- 3D-VAR data assimilation scheme
- Bulk microphysics parameterization, 6 prognostic water variables: water vapour, cloud water, rainwater, primary ice, graupel and snow (Pinty and Jabouille, 1998, Caniaux, 1994)
AROME forecasts and uncertainty

ALADIN & AROME data assimilation cycle

24-h forecasts

LBCs
ICs
AROME forecasts and uncertainty

ALADIN (10 km)

AROME (2.5 km)

ALADIN & AROME data assimilation cycle

LBCs

ICs

24-h forecasts

14th AMS conference on Mesoscale Processes, 1 August 2011, LA | B V, O N, V D
AROME forecasts and uncertainty

ALADIN & AROME data assimilation cycle

ALADIN (10 km)

AROME (2.5 km)

LBCs

ICs

24-h forecasts

14th AMS conference on Mesoscale Processes, 1 August 2011, LA | B V, O N, V D
The Ensemble experiments

AROME-PEARP

- Each AROME assimilation cycle uses LBCs from one PEARP (global, short range ensemble) member

AROME-PERTOBS

- Unique LBCs from the deterministic large scale forecast
- Each AROME assimilation cycle uses randomly perturbed observations

- The AROME-PEARP ensemble samples the uncertainty on synoptic-scale LBCs and initial conditions
The Ensemble experiments

AROME-PEARP
- Each AROME assimilation cycle uses LBCs from one PEARP (global, short range ensemble) member

AROME-PERTOBS
- Unique LBCs from the deterministic large scale forecast
- Each AROME assimilation cycle uses randomly perturbed observations

- The ensemble data assimilation technique is known to sample the analysis error quite well (Berre et al., 2006)
The Ensemble experiments

AROME-PEARP
- Each AROME assimilation cycle uses LBCs from one PEARP (global, short range ensemble) member

AROME-PERTOBS
- Unique LBCs from the deterministic large scale forecast
- Each AROME assimilation cycle uses randomly perturbed observations

AROME-COMB
- LBCs from one PEARP member
- Assimilation of randomly perturbed observations
Evaluation period

31 (18) days

- 6 October 2008 -> 5 November 2008 (31 days)
- 15 October 2008 -> 1 November 2008 (18 days)

- 20 October 2008
 observed daily precipitation

- 1-2 November 2008
 observed daily precipitation
Results

Vié, B., O. Nuissier and V. Ducrocq, 2011: *Cloud-resolving ensemble simulations of Mediterranean Heavy Precipitating Events: Uncertainty on initial conditions and lateral boundary conditions*, MWR, 139:403-423

- The impact of uncertainty on LBCs rapidly overcomes the impact of uncertainty on ICs (after around 12 h in our configuration)
- The relative impact of ICs and LBCs depends on the meteorological situation
- The spread in the AROME-PEARP ensemble represents a temporal or spatial uncertainty better (it has a wider geographical extent)
- Promising precipitation scores, despite the underdispersion for low-level parameters
- The combination of both sources of uncertainty in the AROME-COMB ensemble improves the performance
Selective perturbation of observations

- Focus on important low-level parameters for the HPEs, as identified through case studies (O. Nuissier, V. Ducrocq) and idealized simulations (E. Bresson)

![Wind speed](image1.png)
![Humidity](image2.png)
![Temperature](image3.png)

00 UTC 31 Oct. 2010, 12-h accumulated precipitation, AROME forecasts
Taking model errors into consideration

With collaboration from É. Richard, S. Fresnay and A. Hally, Laboratoire d’Aérologie, Toulouse, France.

- Perturbation of 3 microphysical tendencies:
 - autoconversion
 - accretion
 - evaporation

- No effect on probabilistic scores

- For some special cases, changes both the intensity and position of the precipitating system
Taking model errors into consideration

20 Oct. 2008, 00 UTC + 12 h, θ_V (colours), CWC (black), RWC (gray)
Taking model errors into consideration

20 Oct. 2008, 00 UTC + 15 h, θ_v (colours), CWC (black), RWC (gray)
Taking model errors into consideration

20 Oct. 2008, 00 UTC + 18 h, θ_v (colours), CWC (black), RWC (gray)
Ensemble spread

- Ensemble combining all the three sources of uncertainty
- Average over 18 days
- Vertical profiles of ensemble spread and RMSE for temperature
Conclusions & prospects

Vié, B., O. Nuissier and V. Ducrocq, 2011: *Cloud-resolving ensemble simulations of Mediterranean Heavy Precipitating Events: Uncertainty on initial conditions and lateral boundary conditions*, MWR, 139:403-423

- Uncertainty on LBCs has the strongest impact on the CPM forecasts
- Focus on the predictability of HPEs or design a generic EPS?
- Better sampling of model errors (e.g. stochastic physics, F. Bouttier)
- Introducing perturbations of the low-level conditions (surface fields, orography...)
- Select a few representative members from a global ensemble (O. Nuissier)

- Perform a hydrometeorological evaluation of the ensemble forecasts within the framework of the MEDUP project, article to be submitted in NHESS (in collaboration with G. Molinié, LTHE, and B. Vincendon)
- Sept-Oct 2013: Special Observing Period of HyMeX
Conclusions & prospects

Vié, B., O. Nuissier and V. Ducrocq, 2011: *Cloud-resolving ensemble simulations of Mediterranean Heavy Precipitating Events: Uncertainty on initial conditions and lateral boundary conditions*, MWR, 139:403-423

- Uncertainty on LBCs has the strongest impact on the CPM forecasts
- Focus on the predictability of HPEs or design a generic EPS?
 - Better sampling of model errors (e.g. stochastic physics, F. Bouttier)
 - Introducing perturbations of the low-level conditions (surface fields, orography...)
 - Select a few representative members from a global ensemble (O. Nuissier)

- Perform a hydrometeorological evaluation of the ensemble forecasts within the framework of the MEDUP project, article to be submitted in NHESS (in collaboration with G. Molinié, LTHE, and B. Vincendon)
- Sept-Oct 2013: Special Observing Period of HyMeX
Conclusions & prospects

Vié, B., O. Nuissier and V. Ducrocq, 2011: *Cloud-resolving ensemble simulations of Mediterranean Heavy Precipitating Events: Uncertainty on initial conditions and lateral boundary conditions*, MWR, 139:403-423

- Uncertainty on LBCs has the strongest impact on the CPM forecasts
- Focus on the predictability of HPEs or design a generic EPS?
- Better sampling of model errors (e.g. stochastic physics, F. Bouttier)
- Introducing perturbations of the low-level conditions (surface fields, orography...)
- Select a few representative members from a global ensemble (O. Nuissier)

- Perform a hydrometeorological evaluation of the ensemble forecasts within the framework of the MEDUP project, article to be submitted in NHESS (in collaboration with G. Molinié, LTHE, and B. Vincendon)
- Sept-Oct 2013: Special Observing Period of HyMeX
Conclusions & prospects

Vié, B., O. Nuissier and V. Ducrocq, 2011: *Cloud-resolving ensemble simulations of Mediterranean Heavy Precipitating Events: Uncertainty on initial conditions and lateral boundary conditions*, MWR, 139:403-423

- Uncertainty on LBCs has the strongest impact on the CPM forecasts
- Focus on the predictability of HPEs or design a generic EPS?
- Better sampling of model errors (e.g. stochastic physics, F. Bouttier)
- Introducing perturbations of the low-level conditions (surface fields, orography...)
- Select a few representative members from a global ensemble (O. Nuissier)

- Perform a hydrometeorological evaluation of the ensemble forecasts within the framework of the MEDUP project, article to be submitted in NHESS (in collaboration with G. Molinié, LTHE, and B. Vincendon)
- Sept-Oct 2013: Special Observing Period of HyMeX
Questions ?
The AROME-PEARP experiment
The AROME-PERTOBS experiment

ALADIN
(10 km)

AROME
(2.5 km)

&

AROME
(2.5 km)
(x10)

ALADIN & AROME data assimilation cycle

24-h forecasts
Example on a case study: 1-2 Nov. 2008

AROME-PEARP
AROME-PERTOBS
AROME-COMB

Forecast range (h)
Precipitation mean (mm)

RR24 ≥ 50 mm probability
Example on a case study: 1-2 Nov. 2008

AROME-PEARP AROME-PERTOBS AROME-COMB

14th AMS conference on Mesoscale Processes, 1 August 2011, LA | B V, O N, V D

RR24 \geq 50 mm probability
Example on a case study: 1-2 Nov. 2008

AROME-PEARP AROME-PERTOBS AROME-COMB

Forecast range (h)

Precipitation mean (mm)

RR24 ≥ 50 mm probability

14th AMS conference on Mesoscale Processes, 1 August 2011, LA | B V, O N, V D

15
Example on a case study: 1-2 Nov. 2008

AROME-PEARP
24h accumulated precipitation,
12 UTC 2 Nov. 2008

14th AMS conference on Mesoscale Processes, 1 August 2011, LA | B V, O N, V D
Example on a case study: 1-2 Nov. 2008

AROME-PERTOBS
24h accumulated precipitation, 12 UTC 2 Nov. 2008
Example on a case study: 1-2 Nov. 2008

AROME-COMB 24h accumulated precipitation, 12 UTC 2 Nov. 2008

14th AMS conference on Mesoscale Processes, 1 August 2011, LA | B V, O N, V D
Case study: 20 Oct. 2008

AROME-PEARP
AROME-PERTOBS
AROME-COMB

RR24 \geq 50 mm probability

Forecast range (h)

Precipitation mean (mm)
Case study: 20 Oct. 2008

AROME-PEARP AROME-PERTOBS AROME-COMB

Forecast range (h)

Precipitation mean (mm)

RR24 ≥ 50 mm probability
Case study: 20 Oct. 2008

RR24 ≥ 50 mm probability
Case study: 20 Oct. 2008

AROME-PEARP
24h accumulated precipitation, 12 UTC 2 Nov. 2008
Case study: 20 Oct. 2008

AROME-PERTOBS
24h accumulated precipitation, 12 UTC 2 Nov. 2008
Case study: 20 Oct. 2008

AROME-COMB
24h accumulated precipitation,
12 UTC 2 Nov. 2008
Precipitation: ROC and reliability diagram

Relative Operating Characteristics
- Probability Of Detection against False Alarm Rate
- The upper the curve is, the better the resolution of the ensemble is

Reliability diagram
- Observed frequency against forecast probability

AROME-PEARP
AROME-PERTOBS
AROME-COMB

RR24 \geq 0.5 mm
RR24 \geq 10 mm
Precipitation: Ensemble spread

![Graph showing ensemble spread comparison with different models: AROME-PEARP, AROME-PERTOBS, and AROME-COMB. The x-axis represents spread, while the y-axis represents RMSE. The graph includes various data points indicated by different markers for each model, showing the relationship between spread and RMSE.]
Ensemble spread for 925hPa wind speed

Rank histograms: a U-shaped histogram shows ensemble underdispersion

RMSE vs. Ensemble spread