Performance of the Ellrod-Knox and Lighthill-Ford-Knox clear air turbulence (CAT) algorithms at the Aviation Weather Center

John A. Knox

University of Georgia, Athens, GA

Gary P. Ellrod

NOAA/NESDIS (retired), Granby, CT

Steven R. Silberberg

NOAA/NCEP/Aviation Weather Center, Kansas City, MO

Emily Wilson, Maria Augutis, Alan Black, Corey Dunn, Erik Galicki, Jeremiah Grant, Patrick Malone, Stephanie Phelps, Jared Rackley

University of Georgia GEOG 4911/6911 summer research seminar

American Meteorological Society 15th Conf. on Aviation, Range, and Aerospace Meteorology August 1, 2011

What Is/Why Care About CAT?

- CAT = in-flight bumpiness away from thunderstorms, generally above 500 hPa (Ellrod et al. 2003 Encyclopedia of the Atmospheric Sciences)
- CAT = unsolved aviation forecast problem (Sharman et al. 2006 WAF article on GTG)
- 65% of weather-related commercial aviation incidents attributable to turbulence; "tens of millions" in monetary losses and hundreds of injuries per year (Sharman et al. 2006)
- Rare but high-profile fatal CAT encounters:
 December 1997, UAL Flight 826: 1 dead, 97 injured, 3 crew members seriously injured when plane descends abruptly (g forces 1.8G to -0.8G in 6 seconds) at 31,000 feet in severe turbulence over western Pacific
- Vast majority of turbulence incidents above 10,000 feet (Sharman et al. 2006)—many (but not all) CAT

Overview of Cooperative and Educational Effort

• UCAR/COMET-funded project "Improving Clear Air Turbulence (CAT) Forecasts at the NOAA/NWS/NCEP/AWC with State-of-the-Art Research Diagnostics" (through 2012)

• Work to date:

- Development of operational method of Ellrod-Knox index (EKI)
- RUC 6-hour and 12-hour verification of EKI (Ellrod et al. poster)
- [Independent verification with UKMO Global Model; Ellrod poster]
- GFS 24-hour forecast verification of EKI (this talk)
- Initial efforts to develop operational Lighthill-Ford index (2011-12)
- Undergraduate/graduate seminar on research methods, focused on CAT forecast verification (Summer 2011)
- M.S. thesis project on CAT forecast verification (Wilson, 2011-12)

New CAT Forecasting Method: The EKI Diagnostic

(Ellrod and Knox, 2010 Weather and Forecasting)

- Original method: Ellrod and Knapp (1992 *Weather and Forecasting*) "Turbulence Index", **TI**; used internationally (e.g., NOAA products)
- TI = VWS x DEF
- New diagnostic: **EKI**, is TI + "divergence trend" DVT to account for CAT in unbalanced or highly divergent situations, especially in anticyclonic conditions (Knox 1997 *Mon. Wea. Rev.*)

Operational Methodology of the EKI Diagnostic

- Divergence trend used instead of tendency because tendencies calculated from model time steps are ~ 2 orders of magnitude smaller than VWS and DEF
- DVT = C $[(du/dx + dv/dy)_{h2}$ $(du/dx + dv/dy)_{h1}]$ where C is an empirical constant (scaled divergence tendency)
- Tests at AWC yielded good results for GFS for C = 100 and a time step of 3 hours
- Forecasts made for 200-250 hPa layer (equiv., FL 340-390)
- Deformation and divergence calculated at top of layer

Verification Methodology

- PIREPs for December 2010-March 2011
 - Over 4000 PIREPs included
 - Over 1000 moderate-or-greater "MOG" reports
 - Larger database than in Ellrod and Knox (2010)
- EKI and TI forecasts calculated from 24-h GFS forecasts (23-km horizontal resolution) valid at 0Z and 18Z each day
 - PIREPS within +/- 1 h of forecast time included in analysis
- To attempt to eliminate mountain wave turbulence, PIREPs west of Denver, CO ignored
- To attempt to eliminate turbulence due to deep convection, PIREPs within 50 miles of radar reflectivities of 50 dBz or greater ignored
- Performance evaluated using various index thresholds for both EKI and TI: 0, 4, 6, 8, 10, 12 and 16 (x 10⁻⁹ s⁻²)

Ellrod-Knapp (TI) 5 Mar 2011 0Z

(threshold contours 4 (thick), 8, 16, 32)

All PIREPs and index calculations from S. Silberberg, AWC

Ellrod-Knox (EKI) 5 Mar 2011 0Z

(same thresholds)

More hits for EKI, some more false alarms

Forecast Verification Statistics

	Observed CAT	Observed NULL
Forecast CAT	(a) Hit	(b) False Alarm
Forecast No CAT	(c) Miss	(d) Correct Rejection

- Hit Rate (PODy): a/(a+c)
- **PODn**: d/(b+d)
- True Skill Statistic (TSS): PODy + PODn -1
- Critical Success Index (CSI): a/(a+b+c)
- ROC curves: (PODy vs. 1-PODn)

Results (all turbulence reports)

Boldface indicates better performance vs. other index

GFS 24-h	Dec 2010-Mar 2011 0z and 18z n=4028 PIREPs							
	PODy		PODy PODn		TSS		CSI	
Threshold	TI	EKI	TI	EKI	TI	EKI	TI	EKI
4	0.334	0.516	0.856	0.718	0.190	0.235	0.277	0.368
6	0.213	0.345	0.936	0.884	0.149	0.229	0.195	0.296
8	0.122	0.199	0.954	0.924	0.076	0.124	0.114	0.180
10	0.073	0.130	0.986	0.970	0.059	0.010	0.072	0.125
12	0.057	0.098	0.990	0.980	0.046	0.078	0.056	0.095
16	0.019	0.032	0.992	0.988	0.012	0.020	0.019	0.031

- PODy: EKI improves upon TI by 53-78%
- PODn: TI better than EKI by only 0.4-19%
- TSS: EKI improves upon TI by 24-83%
 (54% improvement at threshold = 6)
- CSI: EKI improves upon TI by 33-74%

For Comparison: EKI vs. TI using RUC 6-h and 12-h forecasts (left and center) versus GFS results (right)

TI vs. EKI 6-h RUC (threshold of 4)

TI vs. EKI RUC (threshold of 6)

GFS EKI Results (thresholds 4 and 6)

	July 2007 N=335		Dec: N=8	2007 333	Combined N=1168		
	TI EKI		TI	EKI	TI	EKI	
PODy	0.220	0.349	0.321	0.474	0.284	0.421	
PODn	0.887	0.775	0.706	0.678	0.736	0.692	
TSS	0.107	0.123	0.027	0.152	0.020	0.113	

	Dec '10	6h <u>Fcst</u> - Jan '11 901	RUC2 12h <u>Fcst</u> Dec '10– Jan '11 N=602		
	TI	EKI	TI	EKI	
PODy	0.480	0.662	0.450	0.577	
PODn	0.796	0.713	0.836	0.754	
TSS	0.276 0.375		0.286	0.331	

GFS EKI 4 EKI6 24-h Dec 10-Dec 10-Mar 11 Mar 11 fcst N=4028 N = 4028**PODy** 0.516 0.345 **PODn** 0.718 0.884 0.235 **TSS** 0.229

Ellrod and Knox, 2010 Weather and Forecasting

Ellrod et al. poster at ARAM

- GFS 24-h results better than Ellrod-Knox 6-h RUC results
- GFS 24-h results intermediate between Ellrod-Knox 6-h results and latest RUC 6-h and 12-h results

Results: ROC Curves (all turbulence)

RUC 6-h Dec 2010-Jan 2011 (Ellrod et al. poster)

GFS 24-h Dec 2010-Mar 2011

- Results improve upon Ellrod-Knox (2010) ROC curves (not shown)
- Improvement more obvious with RUC than GFS

GFS Results (MOG turbulence only)

Boldface indicates better performance vs. other index

GFS 24-h	Dec 2010-Mar 2011 0z and 18z MOG: n=3552 PIREPs							
	PODy		PODn		TSS		CSI	
Threshold	TI	EKI	TI	EKI	TI	EKI	TI	EKI
4	0.479	0.658	0.856	0.718	0.335	0.376	0.372	0.421
6	0.274	0.442	0.936	0.884	0.211	0.326	0.243	0.359
8	0.194	0.305	0.954	0.924	0.149	0.228	0.178	0.264
10	0.095	0.163	0.986	0.970	0.081	0.133	0.093	0.154
12	0.071	0.127	0.990	0.980	0.061	0.106	0.070	0.122
16	0.039	0.069	0.992	0.988	0.030	0.057	0.038	0.068

- PODy: EKI improves upon TI by 37-79%
- TSS: EKI improves upon TI by 12-90%
 (55% improvement at threshold = 6)
- CSI: EKI improves upon TI by 13-79%
- ROC curves: TI, EKI curves similar (not shown)

Summary of Results and Future Work

- Results of Ellrod and Knox (2010) confirmed, extended
- Ellrod-Knox Index EKI improves upon Ellrod-Knapp TI for most forecast metrics for 24-h GFS forecasts
- PODy, PODn and TSS values better for 24-h GFS forecasts than for RUC 6-h forecasts in Ellrod and Knox 2010 study
- EKI improves upon TI for both MOG and all levels of turbulence with GFS
- Thresholds of 4 or 6 appear to give the best results for GFS (similar to RUC results)
- 2011-12: Case studies and expansion to additional models and CAT forecasting indices
- End result: New, improved operational CAT indices

Questions?
Contact me at johnknox@uga.edu