

The meteorological part in the European project DELICAT DEMONSTRATION of LIDAR based Clear Air Turbulence

The DELICAT project aims to validate an advanced and new technology for medium-range detection of Clear Air Turbulence. It will allow the improvement in the understanding of CAT phenomenon and the forecasting capabilities.

The project

•Project total cost 5.6M€, European Commission contribution 3.8M€

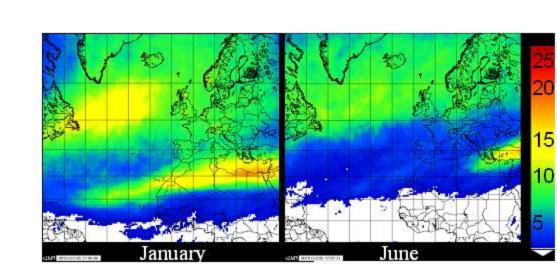
•12 partners:

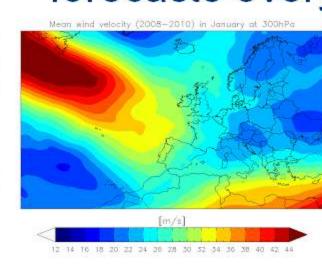
Flight test campaign

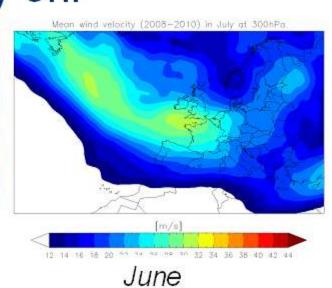
NLR Cessna Citation research aircraft with fairing

The experiment

- •Vertical wind speed can be detected through air density fluctuations => fluctuations of LIDAR backscattered energy (Rayleigh contribution, molecular back-scattering).
- •A LIDAR prototype has been developed and is placed in the NLR research aircraft.
- •The atmosphere on flight path is analysed by the UV LIDAR (both molecular and aerosol backscatter signal recorded).
- •The atmosphere on the flight path is analysed by the aircraft onboard sensors (accelerations and rotations, air temperature, airspeed, etc...).
- •The data from the LIDAR and from the aircraft are compared off-line.

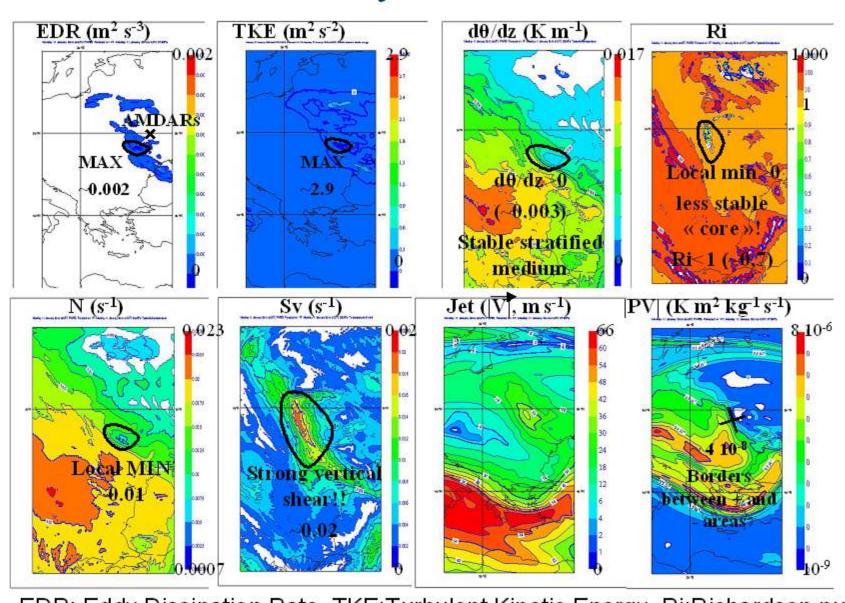



The meteorological part


Climatologies

•Based on the ERAinterim reanalysis from the ECMWF (20 years) Ellrod index on Europe

•Based on the COAMPS model-Coupled Ocean/Atmosphere Mesoscale Prediction System- resolution ~ 39km, period : 2008-2010, at least 4 forecasts every 3h.

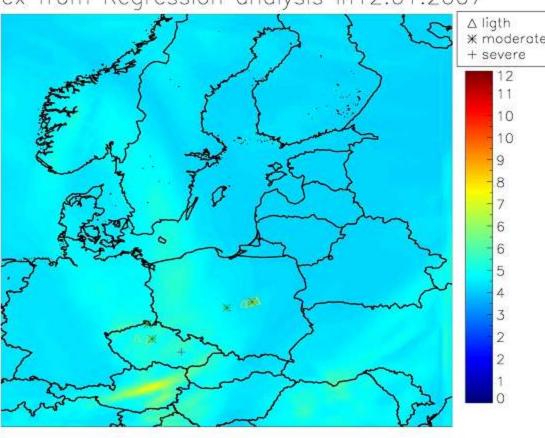


January

Indices calculated at high vertical resolution

- •A selection of CAT indices are calculated on the Météo-France NWP model at high resolution (horizontal ~10km, vertical ~10m), 24h forecasts every 6h. Data set : Jan-May 2010.
- Verification will be performed by using AMDAR data DEVG and turbulence indices
- •Study case: 11th of January 2010 at 01UTC at 275 hPa ~ 10km

EDR: Eddy Dissipation Rate, TKE:Turbulent Kinetic Energy, Ri:Richardson number, N: Brunt Vaisala fequency, Sv: Vertical wind Shear, PV: Potential Vorticity


Flight test campaign: October & December 2011 •A specific meteorological assistance will be provided

during the campaign

Validation

•The data collected during the flight test will be used as a validation data base to verify the indices developed during the project.

Indices calculated by adaptative method Index from Regression analysis in 12.01.2007

Example of regression calculated vertical gust, based Ellrod1, Colson-Panofsky and Vertical Wind Shear indices, with some AMDAR observations

First method: Adaptative multidimensionnal regression analog to Sharman et al (2006) Result represents expected vertical gust speed.

learning method (random forest) using AMDAR turbulence indices and NWP models <u>Third method</u>: optimization of horizontal resolution (see Passner et al (2008))

Second method: machine

Corresponding author addresses: christine.lebot@meteo.fr
Jkopek@icm.edu.pl
audrey.crespin@meteo.fr
http://delicat-fp7.org

