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Motivation: Operational weather prediction models are currently poor at pinpointing locations 

and timing of convective storm initiation within 0-6 hour timeframe. While extrapolation 

techniques work well for pre-existing storms, they do not apply to new storm formation.

The present study will fuse operational satellite and model data using artificial intelligence 

techniques to create improved CI forecasts over both land and water in the Gulf of Mexico. 
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NASA Advance Satellite Aviation Weather Products Initiative

NASA ROSES 2007 & 2009

Collaborators: NASA SPoRT



• MODIS datasets will be used to form land surface heating gradient and land surface variability 

(i.e. heterogeneity) which have been correlated with the formation of non-classical mesoscale 

circulations that support cumulus cloud development, and therefore help identify potential 

locations for thunderstorm formation within 1-6 hour timeframes.

• Artificial Intelligence techniques will be employed to identify new data for incorporation into 

the SATellite Convection AnalySis and Tracking (SATCAST) convective initiation algorithm, to 

optimize SATCAST and to create a probabilistic predictive model of early storm development, 0-

1, 1-6 and 24 hours into the future.

• Use of the Thunderstorm Artificial Neural Network (TANN) algorithm, including the NASA 

datasets, in addition to NASA Land Information System (LIS) fields and perhaps AMSR-E sea 

surface temperatures, will improve 1-6 hour thunderstorm forecasts in the vicinity of southern 

Texas.

• Emphasis is on enhancing convective nowcasting accuracy for Gulf of Mexico region airports.

• TRMM, CloudSat and GOES-based CI training database used to characterize storms to define

“truth” for tuning and verification.
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Background & Goals



The “A-Train” data to be used is TRMM, AMSR-E, MODIS and CloudSat data, in 

combination with algorithms that rely on GOES, as well as the Artificial 

Intelligence forecast methods.
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Motivation



Cloud top heights derived from GOES-East via the NASA-funded Convective Diagnosis 

Oceanic product show the path of Continental Airlines 128 on August 3, 2009.  The 

aircraft track is overlaid, and an arrow points to the location of the Boeing 767’s 

convectively induced turbulence encounter above a rapidly-growing convective cell at 

approximately 0756 UTC.  The images are from 0715 (upper left), 0745 (upper right), 

0815 (lower left), and 0845 (lower right).
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Example of SATCAST implementation in CoSPA 
Forecast
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Outline

1. Algorithms for 0-6 hour CI nowcasting
a) Random Forest methods, relevant to convective nowcasting

b) The Artificial Neural Network (ANN) Thunderstorm forecasting model

c) GOES 0-1 hour convective and lightning initiation nowcasting

2. Enhancements to RF and TANN
a) Heating indices/NCMC and 1-6 hour thunderstorm forecasting

b) Land Surface Variability fields

c) Development of CI training database (contingency table)

d) Leveraging ROSES 2007 results
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Methods: Convective Nowcasts/Diagnoses

Monitor…

~11 IR fields for GOES:

CI Time: 1st  ≥35 dBZ 

echo at ground, or at  

–10 ºC altitude

SATellite Convection AnalySis and Tracking (SATCAST) System

7

1732 UTC 1746 UTC

Mobile Radar at 1826 Tallahassee at 1829 

miss

correct negatives

miss
Walker et al. (2011)



SATCAST Algorithm: GOES IR Interest Fields
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NASA North Alabama total-cloud, 

Lightning Mapping Array network, used 

to identify first flash(above)

All 10 lightning initiation interest fields as 

available from current GOES-12 imagery 

(right)

SATCAST Algorithm: Lightning Initiation Interest Fields

Harris, R. J., J. R. Mecikalski, W. M. MacKenzie, Jr., P. A. Durkee, 

and K. E. Nielsen, 2010: Definition of GOES infrared fields of 

interest associated with lightning initiation. J. Appl. Meteor. 

Climatol. 49, 2527-2543.
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Random Forest (RF) Data Mining
• RF is a non-linear data mining technique used to analyze a retrospective 

database and…

� Produce estimates of variable importance

� Create a non-parametric (no assumptions about functional form), 

probabilistic empirical predictive model via an ensemble of decision 

trees (all combinations of all variables)

� Identify the most valuable SATCAST components and additional 

variables for convective initiation prediction

• Method can be used for any problem where a potential predictor values are 

paired with a binary (yes/no) predictand

Vote: 1

=> 40 votes for “0”, 60 votes for “1” can be translated into a probability

Data pt.

Tree 1

Vote: 0

Data pt.

Tree 2

Vote: 0

Data pt.

Tree 3

Vote: 1

Data pt.

Tree 4

Vote: 0

Data pt.

Tree 100
…

10



11

RF Methodology

• Define VIP1 initiation as the observation of VIP1+ at least 40 km 

away from where any VIP1+ was at the analysis time, adjusted for

storm motion

– VIP 1+ is equivalent to VIL > 0.14 kg m-2

• Define VIP3 initiation as the observation of VIP3+ at least 40 km 

away from where any VIP3+ was at the analysis time, adjusted for

storm motion

– VIP 3+ is equivalent to VIL > 3.5 kg m-2

• Associating potential predictor variables with initiation “truth” at 

each pixel (adjusted for storm motion) permits statistical analysis 

of variable significance and construction of a predictive model

• For each problem, randomly resample sets of “true” and “false”

pixels from dataset (sample more of rare event)

• Even Julian days used for training, odd for testing and vice-versa

– Multiple training/testing subsets used for cross-validation
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Example RF probability calibration
1-hr, VIP 1+ prediction

Random Forest votes
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Day/night, 159 total predictors
SATCAST

Importance Ranks

CI VIP3+ Near-storm VIP3+
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Importance Ranks
Daytime only , 191 total predictors

SATCAST

Near-storm regime VIP3+Near-storm regime VIP3+ Near-storm regime VIP1+Near-storm regime VIP1+

CI regime VIP3+CI regime VIP3+ CI regime VIP1+CI regime VIP1+
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Conditional histograms
13.3-10.7 micron, 1-hr, 40 km VIP 3+ initiation

• Note: very little discrimination capability
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Conditional histograms
13.3-10.7 micron 20 km Max, 1-hr, 40 km VIP 3+ initiation

• Note: discrimination capability improved
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RF Evaluation on 2009 data

Max CSI Max TSS AUC
2h simple 

extrapolation
0.005 ± 0.002 0.17 ± 0.05 0.60 ± 0.03

CoSPA (2h) 0.012 ± 0.005 0.12 ± 0.03 0.56 ± 0.02

LAMP 1-3h 

(2hr)
0.023 ± 0.006 0.56 ± 0.03 0.83 ± 0.01

2h RF 0.032 ± 0.011 0.68 ± 0.02 0.91 ± 0.01

CI regime: VIP Level 3+ (daytime only)

CSI = Critical Success Index

TSS = True Skill Score

AUC = Area Under the Receiver Operating Characteristic Curve
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Example: RF probabilistic nowcast
VIP 3+, 2 hr forecast; only probabilities > 10% shown



ANN Model to forecast thunderstorm 
activity up to 24 hours in advance, 
and with a spatial accuracy of 20-km 
in South Texas

ANN inputs include outputs from 

(1) deterministic mesoscale Numerical 
Weather Prediction (NWP) models, 

(2) selected sub-grid scale data that 
contributes to convective initiation, 
or CI.

Waylon Collins, Corpus Christi Weather 
Forecast Office

Philippe Tissot, Texas A&M University-
Corpus Christi
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MODIS
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Victoria 07-08 Test Case (Box 238)

TANN Input Variables
• 1: Date Values (yearly trig curve)

• 2-17: F00 NAM Current Atm State
– 2-u_sfc[m/s],3-v_sfc,4-u_900,5-v_900,6-u_800,7-v_800,8-u_700,9-v_700,10-u_600,11-

v_600,12-u_500,13-v_500,14-shear sfc-700 [x10-3 s-1],15-shear 900-700, 16-HI_Low [C],17-
CTP_proxy[dimensionless]

• 18-36: F03F18 NAM Predictions:
– 18-cp[kg/m^2],19-vv_925[Pa/s],20-vv_700,21-vv_500,22-u_sfc[m/s],23-v_sfc,24-u_850,25-

v_850,26-s-8 shear[x10-3 s-1],27-8-6 shear[x10-3 s-1],28-t_sfc[K],29-pw[kg/m^2],30-li[K],31-
cape[J/kg], 32-cin,33-dropoff[K],34-rh_850[%],35-mr_850[g/kg],36-LCL[m]

• 37: AOD

• 38: Ndry (number of previous dry days over the past 10 days)

• 39: MaxGradientAPI

• 40: Mean API

• 41: Max API

• 42: MeanBoxAPIGradient

• 43: Centroid Distance

• 44: Entropy

• 45: Purity

• 46: Random parameter (for RF – no impact on ANN)
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Background text regarding model set-

up
• The full data set (March 2004-December 2010) was used to determine a 

good artificial neural network architecture. Feedforward network with 
two hidden layers were tested.  The data set was randomly divided into a 
training set (60%), a testing set (30%) and a validation set (10%). To 
prevent overfitting two strategies were compared, the use of a validation 
set with the levenberg-Marquardt training algorithm and the use of the 
Bayesian regularization algorithm, both as implemented in the Matlab 
Neural Network toolbox.  In the case of the Bayesian regularization 
training, the validation set is automatically integrated with the training 
set.  For both strategies a logsig function was used in the hidden layer 
while the number of hidden neurons and the function of the output 
neuron were varied.  Overfitting was found to be a problem for all 
networks when a logsig function as used in the output neuron and for 
ANNs with 3 or more hidden neurons when using a logsig-purelin set of 
functions.  The neural network architectures were compared by 
computing ROC curves 
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• Best performance and stability and the smallest difference between 
training and testing set performance was obtained for a [1,1] ANN 
with logsig and purelin functions. This configuration was then used 
for a comparison between the TANN and the performance of the 
forecasters of the Corpus Christi Weather Forecast Office.  
Performance for the forecasters was recorded for the period of 
January 2007 to December 2008.  The rest of the data set (March 
2004 to December 2006 and January 2009 to December 2010) was 
divided into a training (70%) and testing set (30%).  Based on the 
performance on the testing set and particularly the POD versus 
False Alarm Rate performance a threshold was selected.  Lightnings 
during the 2007-2008 period were then predicted with the ANN 
and threshold selected on the rest of the data set. 

• Data not available yet for forecasters

Background text regarding model set-

up
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TANN Performance

• Example of Model calibration for a [1,1] ANN with 

logsig-logisg functions and all possible inputs. The 

data set was divided 60% training – 35% testing – 5% 

left for validation purposes. 
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TANN Model Performance

• Model calibrated over March 2004 through 

December 2010 without the period 2007-2008 

used for performance assessment (below) 

POD F CSI Heidk

e

Peirc

e

YuleQ CSS

3 hrs 0.93 0.22 0.12 0.17 0.71 0.96 0.12

6 hrs 0.97 0.33 0.19 0.22 0.64 0.97 0.19

9 hrs 0.81 0.25 0.21 0.25 0.56 0.85 0.20

12 hrs 0.78 0.22 0.08 0.10 0.55 0.85 0.07
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Variable Importance from RF Modeling 

with same data set

• In the present model configuration the most important 
variable for thunderstorm predictions are 18-cp[kg/m2], 
29-pw[kg/m2], and 36-LCL[m] (i.e. importance of NAM 
predictions with TANN ~ MOS) but many other variables 
contribute to model performance including subgrid scale 
inputs
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Outline

1. Algorithms for 0-6 hour CI nowcasting
a) GOES 0-1 hour convective and lightning initiation nowcasting

b) Random Forest methods, relevant to convective nowcasting

c) The Artificial Neural Network (ANN) Thunderstorm forecasting model

2. Enhancements to RF and TANN
a) Heating indices/NCMC and 1-6 hour thunderstorm forecasting

b) Land Surface Variability fields

c) Development of CI training database (contingency table)

d) Leveraging ROSES 2007 results
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1-6 h CI Nowcasting:

Land-surface Heating Partitioning, Soil Moisture, Antecedent Rain

Goal: To demonstrate if one can predict today’s convective initiation based on

knowledge of “background” information, from the land surface (and the resultant

heterogeneity in latent and sensible heating rates) and from antecedent precipitation.

→→→→ 1-6 hour CI Index

Inputs: (a) GOES-estimated solar insolation, (b) soil moisture (from models and/or

estimated from antecedent rain) and (c) vegetation (health, NDVI).

28Walker et al. (2009)
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Land Surface Variability (LSV)

Gambill and Mecikalski (2011)

7-day average MB06 CI scores:

Red= score ≥ 5

Topography-

gradient signal

Convective Clouds vs LSV

15-19 UTC 6-14 July 2006

CI Scores correlated with topography, vegetation,

& land-cover: Physical forcing for cumulus updrafts.

LSV =

SDland cov er height

Max(SDland cov er height )
+

SDelevation gradient

Max(SDelevation gradient )
+

SDNDVI

Max(SDNDVI )

Higher cumulus cloud

frequency with

increased LSV



Leveraging ROSES 2007 Results:
Enhancements to SATCAST Interest Fields

1. Precipitable Water (PW) has shown to have most impact on interest fields.  Viewing 
angle is another important impact on the interest fields.

2. High amounts of PW can cause some interest fields that use 10.7 μm to miss due to 
water vapor absorption in that channel.

3. Regional adjustments to IR interest fields help avoid use of uniform thresholds.

4. Solid determination that use of multiple interest fields is beneficial to reduce false 
detection, while some IR fields are unimportant in CI nowcasting.

5. Correlating IR fields to NWP datasets is difficult when expecting to bound CI 
nowcasting by environmental constraints.
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Near-term Plans

1. Develop a case study approach, focusing on events of CI 

and LI over Gulf of Mexico and near-shore airports.

2. Couple 1-6 hour CI nowcasting to “storm intensity”

estimates that leverage TRMM cell

database, TRMM fields and LIS.

3. Populate the ANN model with

MODIS estimates of soil moisture,

and AMSR-E SST data, for 24 hr

thunderstorm forecasting.

4. Basic research to better understand

how to use IR and reflectance fields

over oceanic regions to nowcast CI.

from Donovan et al. (2008)
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