Determining FAA <u>Mid-Term</u> Aviation Weather Requirements for Traffic Flow Management – *the Transition to NextGen*

Presented to: 15th Conference on Aviation, Range, and Aerospace Meteorology (ARAM) Los Angeles, CA 1-4 August, 2011

Briefing by: Bob Showalter CSSI, Inc.

Other Authors: Cheryl Souders, Frances Bayne, Stewart Stepney, Lorraine Leonard, Jack May & James Tauss

Date: August 3, 2011

Federal Aviation Administration

FAA Mid-Term Operational Capability (MOC) 2015-2018 NAS-Level Requirements

- Core Team: NWPRT led by Cheryl Souders; includes Stewart Stepney, Frances Bayne, Bob Showalter, Jack May, James Tauss, Lorraine Leonard & Ernie Dash
- Facilitates Transition from IOC to the Far-Term (FOC) of NextGen in accordance with NextGen CONOPS & NextGen Wx CONOPS
- Describes NAS-Level MOC Functional & Performance Requirements not allocated to particular Agencies or solutions
- Outlines Requirements in 4-D Wx Data Cube
 - 4-D Wx Single Authoritative Source (4-D Wx SAS) minimally implemented by MOC with 25% of Required Wx Elements (to include Convections, Winds & Temps)
- 4-D Wx Data Cube contains meteorological data sets (Obs & Forecasts) from which Wx processors (NWS & NWP WP1) create information, but
 - Wx Integration into Automation systems possibly limited during MOC (2015-2018)
 - Service Gaps may remain in MOC (subject to future benefit/cost prioritization)

Why the Mid-Term ?

- Traffic Flow Mgmt (TFM) requires Improved Mid-Term Wx Support for four TFM goals:
- Flight Planning & Collaboration
- Integrated Capacity Management & Flow Contingency Planning
- Integrated Arrival/Departure Management
- Performance Management

Mid-Term Wx Actions Needed

- Improve Wx Forecast Accuracy & Resolution (time & space) enabling TFM to <u>make better decisions</u> for
 - Routing/Re-routing
 - Aircraft Arrival Rate
 - Airspace Flow Program initiation
 - Ground Stop/Delay
 - SWAP Implementation
 - Metering/Spacing

Better Assessment of Airspace Constraints from Wx

- NWPRT working with TFM Requirement Working Group (TRWG) to facilitate:
 - Determining Wx Elements TFM Needs & Associated Performance Requirements
 - Translation of Wx State Data to Constraint Fields & Threshold Events
 - Integration of constraint/threshold fields into TFM Automation (DSTs) <u>enabling them to route/re-route</u> around Impact Fields

FAA MOC Wx Requirements' Assumptions

- MOC Weather Performance values will be less than those of FOC
 - Accuracy and Resolution will Support TFM Decision Making but not fully meet NextGen needs (more 'coarse' than at FOC)
- Improved update frequency of Wx information during Mid-Term supports TFM & User need to respond to rapidly changing circumstances
- Wx information will be formatted for Integration into automation (DSTs) in the Mid-Term
 - However, it is not known if TFM & User DSTs will be sufficiently widespread to enable full collaboration
 - The Translation of potential NAS constraints (from Weather) into the Impact on Operations is performed by TFM and User DST, not Weather
- The availability of consistent, reliable, probabilistic forecasts, covering 3-D location, timing, intensity (and probability of all possible outcomes) is not likely in the Mid-Term

Approach for TFM Wx Requirements

TRWG & NWPRT identified TFM Wx Needs to include Observations & Forecasts of:

- Convection*#
- Ceiling/Visibility*
- Marginal VFR*
- IFR/VFR*
- Icing*#
- In-Flight lcing
- Surface
- Turbulence#

```
Notes: * = Core 30 airports, # = en route; in
most instances TFM wants Event Onset &
Cessation
```

- Winds Surface & Aloft
- Volcanic Ash^{*#}
- Microbursts/Low-level Wind Shear*
- Compression due to Winds*
- Liquid/Frozen Precipitation*#

Approach for TFM Wx Requirements

NWPRT Methodology

- Reviewed Mid-Term ConOps
- Developed Mid-Term Functional Requirements
- Used TFM-adjusted Functional Requirements to Develop TFM Mid-Term Performance Requirements
 - <u>Developed</u> Mid-Term Performance Value Tables by <u>determining if</u> <u>current performance requirements are sufficient</u>, or if "in between" performance values (between now and FOC) are needed
- Provided TFM with examples of how to read/interpret the N-Tables so they could validate performance values
- Developed performance requirements <u>using validated</u> <u>performance values</u> from MOC N-Tables

NAS-Level MOC Spatial Accuracy Requirements for Wx

Hazards Observations caused by Convection

MOC values; FOC values

Resolution		High Density Terminal	Designated Terminals	Global Terminal s	En Route	Global
Horizontal		1/4 km <mark>2.5 km</mark>	0.5 km 2.5 km	5 km <mark>5 km</mark>	0.5 km <mark>5 km</mark>	5 km 12 km
Vertical	≤ 5000' AGL < 3000' > 5000' AGL ≥ 3000'	50 feet 250 feet 250 feet 500 feet	50 feet 250 feet 250 feet 500 feet	50 feet 250 feet 250 feet 500 feet	250 feet 500 feet	250 feet 500 feet

FAA TFM MOC Wx Requirements Status Update

TRWG & NWPRT

- NWPRT
 - Provided TRWG with set of Functional & Performance Requirements for Operational Wx elements
 - Briefed TRWG on Functional/Performance Requirements, fielded questions and provided explanation of accuracy values and/or rationale
- TRWG
 - Presently working Near-Term Reqm'ts w/NWS
 - NWPRT to assist TRWG in transition from Near-Term to MOC
 - Late August 2011 TRWG group meets with expanded TFM users to finalize review and formulate adjudication responses
 - TFM Specialists to review MOC Performance Requirements to validate as TFM Wx Needs
- Based on TRWG review, TFM Wx requirements will be updated or removed if not needed

FAA TFM Wx Requirements for MOC - Summary

Pending Validation by TFM Requirements Working Group:

•Envisioned Wx Performance Requirements values for TFM between those of today and FOC

- •Wx Community can provide Translation of State of Atmosphere into at least Convective constraints by MOC
- •ANSP & User Automation (DST) likely in place to Assess Impact from Translated Weather

•Post-validation efforts entail:

- Performing Gap Analysis
- Addressing how to mitigate gaps via Alternatives Analysis employing system engineering process, Cost Benefit Analysis & Risk Mitigation to examine Wx Architecture before allocating TFM MOC Requirements to various 'systems'
- Unmet Requirements assigned to Weather R&D

