

Update on CoSPA Storm Forecasts

Haig Iskenderian

August 2, 2011

This work was sponsored by the Federal Aviation Administration under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

CoSPA Precipitation Forecast

- Deterministic forecast
- Display:
 - Precipitation (VIL)
 - Echo Tops
- Horizontal resolution:
 - 1 km (0-2 hour)
 - 3 km (2-8 hr)
- CONUS coverage
- Forecast out to 8 hours
- Time steps:
 - 5 min (0-2 hr)
 - 15 min (2-8 hr)
- Tactical and strategic planning tool for Traffic Flow Management

CoSPA 0-8 Hour Forecast Main Components

Outline

- CIWS extrapolation/ nowcast improvements:
 - Improved satellite convective initiation
 - Added Echo Top decay; improved ET growth
 - Improved storm extrapolation
- HRRR improvements:
 - Replaced RUC with Rapid Refresh (RR) as parent model for HRRR
 - Used reduced diffusion and raised pressure top in HRRR
 - Used finer resolution sea surface temperature field
- Blending improvements:
 - Added regionally-varying and continually-updating calibration ("running" climatology)
 - Improved convective initiation
 - Improved methodology for phase correction
- Application of CoSPA to probabilistic forecasts

Nowcast Improvements Satellite Convective Initiation

- Incorporated NASA's SATellite Convection AnalysiS and Tracking (SATCAST*) system in FAA CIWS
- SATCAST performs:
 - Cloud classification
 - Cloud tracking
 - Trending of IR channels
 - IR channel differencing
- 8 satellite-based interest fields indicate "confidence" in Cl
 - Account for cloud growth, glaciation, cloud top height

*Mecikalski and Bedka, MWR (2006)

of SATCAST CI Indicators

Nowcast Improvements Satellite Convective Initiation

Fuzzy Logic CI Nowcast Model

Random Forest Predictor Importance

VIL Forecast

RF Source: John Williams, NCAR

Nowcast Improvements Convective Initiation Forecast Example

24 June 2011

Nowcast Improvements Satellite Convective Initiation

2010 CIWS 1 Hr Binary Scores

2011 CIWS 1 Hr Precipitation Forecast

2011 CIWS 1 Hr Binary Scores

Truth

VIP Level 2 Scores

	Dulles (IAD) Region		
·	CSI	BIAS	
2010 CIWS	11.2	0.8	
2011 CIWS	12.9	1.5	

Valid 19 UTC 24 June 2011

Nowcast Improvements Echo Top Growth and Decay

Combine trends in lightning and ET to improve ET forecasts

ET Growth and Decay Predictor Interest Images

Nowcast Improvements Echo Top Growth and Decay

2 hr	Verification	Statistics

	conus		Cincinnati (CVG) Region	
	CSI	BIAS	CSI	BIAS
2010 CIWS ETF	27.2	2.3	27.3	3.1
2011 CIWS ETF	30.3	1.6	29.5	1.6

NOTE: Verification Threshold 30 Kft

28 June 2010

Extrapolation Improvements Multiscale Storm Advection

- Multiple scales tracked (cell, envelope, synoptic), rotational & translational motion applied
- CIWS and CoSPA now share the same advection algorithm

Extrapolation Improvements Multiscale Storm Advection

2hr CSI Scores	Dayton Area	CONUS
2010 CIWS	21.5	15.4
2011 CIWS	24.4	16.0

10 May 2011 2015 UTC

Outline

- Improved satellite convective initiation
- Added Echo Top decay; improved ET growth
- Improved storm extrapolation

• HRRR improvements:

- Replaced RUC with Rapid Refresh (RR) as parent model for HRRR
- Used reduced diffusion and raised pressure top in HRRR
- Used finer resolution sea surface temperature field
- Blending improvements:
 - Added regionally-varying and continually-updating calibration ("running" climatology)
 - Improved convective initiation
 - Improved methodology for phase correction
- Application of CoSPA to probabilistic forecasts

HRRR Improvements RR Parent and Diffusion

12Z + 9h forecast valid 21z 17 July 2010

Better SE coverage for RR parent with no 6th order diffusion

HRRR Improvements RR Parent and Diffusion

25 dBZ 40-km East

CSI = .16 bias=1.21

> 12Z + 9h forecast valid 21z 17 July 2010

25 dBZ 40-km East

CSI = .20

bias=1.50

HRRR:

Paper 13.2 Alexander, NOAA GSD 10:45AM Thu

Outline

- CIWS extrapolation/ nowcast improvements:
 - Improved satellite convective initiation
 - Added Echo Top decay; improved ET growth
 - Improved storm extrapolation
- HRRR improvements:
 - Replaced RUC with Rapid Refresh (RR) as parent model for HRRR
 - Used reduced diffusion and raised pressure top in HRRR
 - Used finer resolution sea surface temperature field

- Blending improvements:
 - Added regionally-varying and continually-updating calibration ("running" climatology)
 - Improved convective initiation
 - Improved methodology for phase correction
- Application of CoSPA to probabilistic forecasts

Blending Improvements Regionally Varying Weights

Shifted from static to dynamic weights

- Accounts for regional variations in relative performance
- Adapts to changes in the skill of the inputs on the fly
- Improved skill of forecast

Model_WT Gen1300_Fcst05h = v1800utc

Blending Improvements Scale Dependent Merging

- Weights are a function of time of day, leadtime, and region (where storm initiation is indicated)
 - Identify model initiation areas
 - Implement storm initiation weighting functions

Blending Improvements Phase Correction

Position errors determined using extrapolation forecasts instead of observations

- Less distortion of storm shapes
- Improved skill

Outline

- CIWS extrapolation/ nowcast improvements:
 - Improved satellite convective initiation
 - Added Echo Top decay; improved ET growth
 - Improved storm extrapolation
- HRRR improvements:
 - Replaced RUC with Rapid Refresh (RR) as parent model for HRRR
 - Used reduced diffusion and raised pressure top in HRRR
 - Used finer resolution sea surface temperature field
- Blending improvements:
 - Added regionally-varying and continually-updating calibration ("running" climatology)
 - Improved convective initiation
 - Improved methodology for phase correction

Application of CoSPA to probabilistic forecasts

Probabilistic Forecast Based on Weather Avoidance Field

CoSPA-based WAF Forecast Time-lagged Ensemble

- O Data > Threshold
- Data < Threshold</p>
- Center pixel <u>location</u>

Pixels above threshold
Probability = _____

Total # pixels in cylinder

Probabilistic Forecast Display Concepts

Probabilistic Forecast Convective Weather Polygons

- May provide first guess for CCFP
- CoSPA polygons being evaluated as part of 2011 Aviation Weather Center Testbed Summer Experiment

Summary

- CoSPA received upgrades to all three of its components:
 CIWS extrapolation, HRRR model, and blending module
- Upgrades included improved convective initiation, storm decay, storm motion, storm structures
- Evaluation of CoSPA is taking place this summer
- Probabilistic convective polygons based on CoSPA forecasts are being evaluated as part of the AWC 2011 Testbed Summer Experiment

Acknowledgements:

- J. Pinto, M. Wolfson, S. G. Benjamin, M. Steiner, S. S. Weygandt, C. Alexander, W. J. Dupree, J. K. Williams,
- J. R. Mecikalski, W. F. Feltz, K. Bedka, D. Morse, X. Tao, D. A. Ahijevych, C. Reiche, T. Langlois, K. L. Haas,
- L. J. Bickmeier, P. M. Lamey, J. M. Pelagatti, and D. D. Moradi