Numerical Simulations of a Cold-Season Turbulence Outbreak

Stan Trier and Bob Sharman NCAR, Boulder, Colorado

Todd Lane and Simon Caine University of Melbourne, Melbourne, Australia

AMS 15th Conference on Aviation, Range, and Aerospace Meteorology

Los Angeles, California, 1 August 2011

25

ND 05

10

15 20

30 35 40 45 50 55 60 65 70 75 DBZ

Key Questions :

- What is the effect of the precip system on the upper-level flow?
- Does the convection contribute to CAT in this case? If so, what are the mechanisms?

SKEW-T/LOG-P VALID 0000 UTC 03/10/2006 KDVN Lat = 41.62 , Lon = -90.58

SKEW-T/LOG-P VALID 0000 UTC 03/10/2006 KSGF

Lat = 37.23 , Lon = -93.38

Simulation of the 9-10 March 2006 Turbulence Outbreak

Nested Simulation Domains (Δ = 30 km, 10 km, and 3.3 km)

Simulations:

- Control (started 24-h prior to reported turbulence)
- Dry simulation (microphysics scheme disabled in D3)
 - eliminates effects of convection within 6-h prior to reported turbulence

- Nested simulations with ARW-WRF version 3.1.1
- 80 vertical layers with 20-hPa model top, 3 fixed horizontal domains
- Kain-Fritsch Cumulus Scheme ²⁰ N on D1 and D2 with fully explicit convection on D3 ($\Delta x = 3.3$ km)
 - Initial and boundary conditions from 6-hourly GFS analyses

Model parameterizations

- Lin et al. microphysics
- MYJ PBL scheme
- Dudhia SW radiation
- **RRTM LW** radiation

24-h Forecast (CTRL) over Domain 3 at 0000 UTC 10 March

- 225-hPa winds
- 210-hPa TKE (brown contours)

225-hPa isotachs

- 225-hPa winds
- 195-225-hPa turbulence reports

10.5-km MSL Total Horizontal Flow (10 Mar case) $_{90 \text{ W}}$ 10.5-km MSL Perturbed Horizontal Flow (10 Mar case) 80 W 100 W 80 H 300 DBZ 300 ш 75 ш. Ы 70 200 200 40 N 40 N Δ. 65 60 100 100 Αh. 55 MЦ <u>M</u>1 MI 50 Щ <u>A</u>111 MIL 45 K1111 200 500 200 100 300 400 100 300 400 500 11.5-km MSL Total Horizontal Flow (17 Jun MCS case) 11.5-km MSL Perturbed Horizontal Flow (17 Jun MCS case) 40 100 10 110 1 500 500 35 30 400 400 25 40 N 40 N 20 ĮW 300 300 15 ۵ī. 10 nı 05 200 200 9 ND KUIL AND 100 100

Un.

400

500

600

100

200

300

400

500

600

Ահ.

300

ա

ш

100

w

Ш

200

W

-ШL

Reflectivity/ Outflow Vertical Shear Magnitude in Current (top) and MCS (bottom) cases

Line-Averaged Cross Section of Cloud (colorfill), θ, Winds, TKE (green), Nm (red)

CTRL 24-h Forecast (0000 UTC 10 March 2006)

Summary

- A nested version of ARW-WRF used to simulate a midlatitude cyclone case (9-10 March 2006) associated with severe aviation turbulence
 - Both organized convection and upper-level flow structure well simulated
- Comparison of full physics CTRL run with dry simulation reveal convection significantly impacts upper-level jet and its associated vertical shear

•Possible turbulence mechanisms are being examined using the simulations

- CIT related to the convectively-enhanced vertical shear (e.g., K-H instability)
- Mechanical forcing of gravity waves from convection below (Lane et al. 2003, Lane and Sharman 2008)
- Gravity-wave emission from unbalanced jets (Knox et al. 2008)