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1. INTRODUCTION

The National Weather Service (NWS) uses
‘probability of detection’ (POD) and ‘false alarm ratio’
(FAR) to assess forecast accuracy of many products
and services, including aviation forecasts like TAFs—
Terminal Aerodrome Forecasts (National Weather
Service 2011). POD and FAR provide helpful
quantitative verification information about forecast
categories, such as cloud cover and ceiling height,
visibility, wind direction and speed, etc. Each basic
category can have a separate and significant impact
on aviation operations, so it is useful to differentiate
between them.

Evaluation of meteorological forecast phenomena
becomes complex when categories and impacts are
not isolated, such as in the case of “convection”, or
thunderstorms. The presence of deep convection can
be verified with equipment like radar and lightning
detection sensors, but it is not a category that
specifically describes singular aviation impacts.
Thunderstorms possess several threat characteristics,
any of which can alternately cause the greatest
impact on aviation operations at a moment in time.
For example, a small, isolated, relatively low-topped
thunderstorm within ten miles of an airport may
impact en route aviation operations to some degree,
but also generate a significant surface wind speed
and direction change at the nearby terminal. Such an
occurrence could have a major impact on aviation
operations, or almost no impact, depending on the
airport’'s runway configuration, volume of traffic, flight
mix, wind detection equipment, air traffic planning,
etc. To reduce the complexity associated with
multiple variables, it makes sense to evaluate weather
forecasts in terms of basic categories and avoid
generalized criteria like convection.

According to Steiner et al. (2009), weather
forecast information needs to be fully integrated into
the Traffic Flow Management (TFM) decision-making
process—translated into aviation impact forecasts—in
order to be most effective. This is one of the key
goals for both the Next Generation Air Transportation
System and the Single European Sky ATM Research.
As forecasts already are an element of TFM success,
it seems reasonable now, and in the future, to
evaluate forecasts in terms of TFM impact.
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During the past few years, “delays” have been
used by the NWS as an informal measure of forecast
impact on aviation operations. While this seems
intuitively reasonable, delays do not measure forecast
quality directly and are a broad aviation impact
category. Evans et al. (2004) proposed that direct
comparison of delays before and after a forecast
system is introduced is very hard to carry out in
practice, even though it appears quite straightforward,
and that a “decision/modeling” [qualitative] method is
the only feasible way to assess potential improvement
in system products.

This is undoubtedly true in the analysis of
generalized forecast categories, e.g., convection.
However, we know that forecasts influence TFM
decisions and impacts, so it should theoretically be
possible to reduce forecast information parameters
and impact variables to a sufficient degree that a
significant correlation exists between the two. This
concept can be applied to ongoing daily and seasonal
evaluation of forecast quality and impact. Pfleiderer
et al. (2007) assert that, when making forecast
system deployment  decisions prospectively,
projections should be validated against objective
metrics following implementation, specifically with
regard to metrics that describe efficiency. Therefore, if
measures like delays are used in forecast evaluation,
an efficiency metric should be included in the analysis
to at least account for history effects.

Aviation System Performance Metrics (ASPM)
provide information about TFM and Air Traffic Control
(ATC) performance that can be used to
supplement/enhance delay information. ASPM
Efficiency Rates were specifically created to measure
an ATC facility’s ability—and by extension, that of the
air traffic system—to do what it says in can do
(Pfleiderer et al. 2007). Together with broader
measures of TFM performance, such as ASPM
“Percent on Time Arrivals” or Air Traffic Operations
Network (OPSNET) “Weather Delays,” this kind of
efficiency metric should aid in the evaluation of
forecast performance. The goal of this study is to
demonstrate, via 2010 San Francisco stratus season
forecasts, the potential use of ASPM and OPSNET
Weather Delays as objective metrics and predictors of
specific, isolated forecast information.

2. DELAYS AND ASPM

The ASPM database is used by the Federal
Aviation Administration (FAA) to document and
evaluate TFM performance. The metrics are



demand-based. Demand is defined as the number of
aircraft that intend to land at a specific airport, or are
ready to depart from the airport, by unit of time
(Federal Aviation Administration 2011a).

ASPM combines data from the FAA en route
system (Host) on aircraft positions, flight plans,
Official Airline Guide schedules, Airline Service
Quality Performance, and (for some of the major
carriers) Out/Off/On/In (OOOI) data. OOOIl data
consists of:

Actual gate departure time (“Out”)
Actual flight takeoff time (“Off")
Actual flight landing time (“On”)
Actual gate arrival time (“In”)

Hence, it is possible to make much more detailed,
objective, quantitative studies of where a flight delay
occurred than is the case with OPSNET delays
(Evans et al. 2004). Three ASPM types—two
efficiency ratings and an arrivals metric—were chosen
to supplement OPSNET Weather Delay information in
this study.

2.1 ASPM Percent on Time Arrivals

The Percent on Time Arrivals (POTA) metric used
in this study simply describes the number of flights
that arrive at a gate less than 15 minutes past the
flight plan time in relation to the total number of
Arrivals for Metric Computation—in other words, the
number of on time arrivals divided by total arrivals.
The last scheduled flight plan before Wheels Off time
is used for metric calculations (Federal Aviation
Administration 2011b).

2.2 ASPM Demand-based Efficiency Rates

[Efficiency Rate definitions/examples derived from
Wine (2005) and Diana (2005).]

Arrival Efficiency Rate is used to determine how
well demand for arrivals is met. It is the number of
actual airport arrivals divided by the lesser of arrival
demand or the airport arrival rate. These terms are
defined as:

e Actual arrivals: how many aircraft landed
during a quarter hour

e Arrival demand: how many aircraft wanted to
land during that quarter hour

e Airport Arrival Rate (AAR): the facility-set
number of aircraft expected to land during
that quarter hour

Demand is not derived from scheduled traffic, but
in the following manner for each flight:

e Start of demand = wheels-off time + filed en
route time

e End of demand = wheels-on time (touch-
down)

An example of the Arrival Efficiency Rate
calculation is provided in Fig. 1.

Departure Efficiency Rate is the number of actual
departures divided by the lesser of departure demand
or the airport departure rate. These terms are defined
as:

e Actual departures: how many aircraft
departed during a specific quarter hour

e Departure demand: how many aircraft
wanted to depart during that quarter hour

e Airport Departure Rate (ADR): the facility-set
number of aircraft expected to depart during
that quarter hour

Departure demand is not derived from the
scheduled traffic, but in the following manner for each
flight:

e Start of Demand = gate-out time +
unimpeded taxi-out time
e End of Demand = wheels-off time (lift-off)

Fig. 2 shows an example of the Departure
Efficiency Rate calculation.

System Airport Efficiency Rate (SAER) is a
weighted average of the Arrival Efficiency Rate and
Departure Efficiency Rate. Arrivals and departures
for SAER are calculated in terms of aircraft demand
per quarter-hour increment. An example of the SAER
calculation is provided (Fig. 3).

Terminal Airport Efficiency Rate (TAER) is similar
to SAER, but arrival demand starts at 100 miles from
the airport and compares an average wheels-on time
vs. actual wheels-on time. TAER is reported for a time
period of an hour or more. For reports covering a
period greater than an hour, the reported TAER is a
weighted average of every hour in the period (Federal
Aviation Administration 2011a).

Theoretically, Efficiency Ratings should provide
relative information about TFM performance that can
help isolate forecast quality. For example, if the
POTA measure is fairly average for a specific weather
scenario, terminal, and day, but the SAER and TAER
were very low for the given situation, one might
expect to find that high quality forecast information
helped limit the number of delayed arrivals. The
hypothesis that SAER or TAER enhance broader
TFM metrics like Weather Delays and POTA in the
prediction of forecast quality will be tested with
statistical regression in Section 4.

2.3 OPSNET Weather Delays

The FAA’'s OPSNET database contains delay
causality information, unlike that described by POTA
and other ASPM information. Delays are assigned to
five major categories within OPSNET: Weather,
Volume, Equipment, Runway, and Other. This is a
major strength, but there are some major deficiencies
associated with OPSNET delays too; delays are



reported by humans at ATC facilities and can be
inaccurate, are excluded if initiated by pilot/airlines,
and are not reported if less than 15 minutes. Delay
reporting methods are also subjective and differ by
facility. (Evans et al. 2004).

Section 8.f.1 of FAA Order 7210.55F (2011d)
describes a list of impact conditions, or constraints,
used to define/assign delays to the Weather category.
This list of impact conditions includes low ceilings, the
meteorological condition of concern used in this
research.

3. DATA SAMPLE

Unfortunately, there are few situations where a
single meteorological condition creates consistent
impacts on aviation. However, certain operationally
significant weather phenomena do occur on a regular
basis and at relatively regular times, such as stratus
ceilings at San Francisco (SFO). Low stratus at SFO
negatively affects the ability of ATC to operate and
TFM to plan effectively. Stratus ceilings are disruptive
to flights on approach to the airport; the reduction in
visibility at relatively low altitudes requires greater
spacing between flights for safety reasons. This need
for space reduces the number of flights that can land
at the airport per hour and usually causes delays.
There is immediate improvement in arrival capacity
and capability when the stratus ceiling lifts or clears
out of the approach corridor.

The 2010 stratus season exhibited some 72
typical “Stratus Days” for which clearing times were
predicted, observed, and recorded by the Oakland Air
Route Traffic Control Center (ZOA ARTCC) Center
Weather Service Unit (CWSU). The raised
acceptance rate, or moment when the AAR was
increased by FAA Traffic Management to
accommodate inbound flight demand, was used to
define the actual stratus improvement time. AAR is a
dynamic parameter specifying the number of arrival
aircraft that an airport, in conjunction with terminal
airspace, can accept under specific conditions
throughout any consecutive sixty-minute period
(Federal Aviation Administration 2011c). AAR’s are
raised at SFO when pilots can maintain visual
separation between aircraft and when Air Traffic
Control can accommodate a greater number of
arrivals. Raised AAR represents the stratus
improvement condition that the CWSU forecasts.

An initial clearing forecast is provided to TFM
decision makers by 12:45 UTC each Stratus Day,
when it is used in a planning teleconference. The
CWSU forecaster differentiates between “typical” and
“non-typical” stratus events; a typical stratus event
occurs when on-shore (west) winds prevail, without
the presence of precipitation or synoptically driven
influences like fronts. Low ceilings reduce airport
capacity significantly, but operations remain in the
optimal  west-approach  runway  configuration.

Essentially, just one weather condition/category
impacts the AAR on typical Stratus Days.

The data sample used for evaluation here (Fig. 4)
includes the 12:45 UTC “CWSU Forecast’ clearing
time and corresponding ASPM/OPSNET metrics for
each SFO Stratus Day in 2010. The CWSU Forecast
data represents a forecast error time in minutes; this
time is the difference between forecast clearing time
and actual clearing time (raised AAR). Positive
CWSU Forecast numbers describe an actual clearing
time that occurred earlier than forecast; negative
numbers mean the stratus deck lingered over the Bay
Area longer than expected by the forecaster. It is
assumed that a smaller error or smaller difference
between forecast clearing time and actual clearing
time equates to a more accurate, higher quality
forecast. This is particularly true with regard to
negative CWSU Forecast numbers. However, large,
positive CWSU Forecast errors should not typically
result in more weather delays; when the stratus deck
clears relatively early, ATC can accommodate more
flights and incur fewer delays. En route flights that
arrive from the East Coast during the late morning
hours can land without the need for an accurate
forecast. Efficiency rating metrics that describe TFM
performance are again an important element of the
analysis here; large delay numbers on large positive
forecast error days would presumably be an indicator
of low efficiency. While a clearly communicated and
accurate forecast should enhance the chances for
efficient operations, there are a multitude of other
variables not related to forecast interpretation that can
cause Weather Delay numbers to increase. Among
these are traffic complexity, facility staffing, and ability
of planners to reach consensus, all of which can
potentially influence efficiency.

4. DATA ANALYSIS
4.1 Descriptive Statistics

A boxplot of Weather Delays (Fig. 5) shows the
positive skewness of the sample, with a long whisker
from around 90 to 150 and short whisker from 0 to 30.
The box represents the inter-quartile range, with a
median value of just over 50 Weather Delays and a
mean value (red dashed line) of just over 60, which
also emphasizes the positive skew. There is
relatively low variability; the majority of days are within
the 30 to 90 Weather Delay range. The sample is
heavy-tailed, with three moderate outliers (two of
them overlap in Fig. 5) and one extreme outlier.
These outliers (Fig. 6) are unusual, but appear to be
an important aspect of the distribution. The CWSU
Forecast was over 300 minutes in error on the two
largest weather delay days. SAER is around 90 on
the other two outlier days, a relatively low efficiency
rating with regard to this data sample that appears to
explain the two remaining outlier values. These four
outliers belong with the other data values; their



removal from the data sample regression reduces
correlation significantly.

4.2 Linear Regression

[This approach is similar to that used by Berk and
Carey 2000, 299—367.]

A scatterplot of CWSU Forecast error and
Weather Delays (Fig. 7) highlights data relationships.
Generally, forecast clearing times are within 100
minutes of actual clearing times and Weather Delays
are below 150 on typical Stratus Days. Early clearing
times, +100 minutes relative to forecast clearing
times, tend to correlate with lower Weather Delay
numbers. ATC is able to recover and deliver more
arrivals to the airport during peak morning traffic times
on these days.

Note that on days when the greatest number of
Weather Delays occurred, stratus cleared very late in
relation to the forecast expectation. The scatterplot of
Weather Delays in Fig. 7 helps illustrate the linear
relationship and negative correlation with CWSU
Forecast error. The trend line for this data set
crosses the x-axis at approximately 73; thus, if a
linear relationship were representative for the 2010
season, a perfect Stratus Day clearing forecast would
result in about 73 Weather Delays, given “average”
ATC efficiency.

One of the goals of statistical regression is
prediction. To evaluate the use of weather delays as
a predictor of forecast quality, a regression can be
used to calculate the least-squares estimates (Fig. 8).
The regression of CWSU Forecast and Weather
Delay data samples yields an R? value (coefficient of
determination) of 0.344, which indicates that 34.4% of
the variation in CWSU Forecast quality can be
explained by the change in Weather Delays. From
the Analysis of Variance (ANOVA) table, one (1)
degree of freedom is attributed to the regression and
that the sum of squares attributed to residuals is
nearly double that of the regression. An F-ratio of
36.76 and P-Value of 6 x 10° indicate that the
regression is statistically significant.

A plot of the residuals (differences between the
observed CWSU Forecast values and the regression-
predicted numbers) can be used to verify that this
data does not violate normal distribution. The plot of
residuals (Fig. 9) indicates that, although the points
do not fall perfectly on the line, the departure is not
strong enough to invalidate our assumption of
normality.

Fig. 10 shows a correlation matrix of the full data
sample. CWSU Forecast correlates meaningfully with
On Time Arrivals and Weather Delays, with Multiple R
statistics of 0.617 and -0.587 respectively. Each has
a Pearson Probability (P-Value) less than 0.05.
Meanwhile, the Airport Efficiency Ratings do not show

a meaningful correlation with CWSU Forecast, which
is a desired result. A scatterplot matrix (Fig. 11)
illustrates the correlation matrix relationships. CWSU
Forecast data exhibits a roughly linear relationship
with both POTA and Weather Delays. The strongest
linear relationship lies between POTA and Weather
Delays; this correlation stands out clearly within the
matrix and has a Multiple R of -0.875 (R-square
0.766).

A multiple regression of all four metric categories
together with CWSU Forecast yields improvements in
the statistical relationship (Fig. 12), an R-square value
of 0.46—46% of the variance in CWSU Forecast error
is due to the differences in these predictors. The
prediction equation, derived from the Coefficients
column, is:

CWSU Forecast = 793.08 + 2.52(TAER) -
14.01(SAER) + 4.81(POTA) — 0.53(Weather Delays)

SAER, while not a meaningful predictor of CWSU
Forecast quality as a single variable, becomes the
most important predictor in the multiple regression
calculation, with a P-value of .0006. The t-stat, or t-
value, for SAER is -3.59. The probability of a t-value
this large or larger in absolute value is about .0006,
well below the 0.05 significance level. So we reject
the null hypothesis that the coefficient is O at the 5%
level and accept the alternative hypothesis. Note that
only the coefficients for SAER and POTA have
significant P-values. Therefore, we should not focus
this analysis on TAER and Weather Delays.

A regression of SAER and POTA (Fig. 13)
produces similar results to the four-coefficient multiple
regression, with an adjusted R-square of 0.45 and
stout significance (P-value 3 x 10™). Now, a test for
regression assumptions:

1. A plot of the CWSU Forecast values against
the predicted values (Fig. 14) shows the success of
the regression. The regression fits the data.

2. A plot of predicted values and residuals of
the CWSU Forecast values (Fig. 15) magnifies the
vertical spread of the data and verifies the regression
assumptions. No curved pattern is apparent, and
there is no trend that might suggest non-constant
variance.

3. A plot of residuals against the individual
predictor variables (Fig. 16 and 17) can reveal
problems that are not clear from the regression
predicted residuals in Fig. 15. It appears that there
are no curves or trends with regard to POTA,
although the SAER data appears to narrow somewhat
as values decrease. This impression might be
lessened if the outlier value ~84 is removed. To test
non-constant variance, we can perform an arcsine-
square root transformation on SAER:



Transformed SAER = sin™ (SQ RT of SAER/100)

The transformed SAER variables yield similar
results in the regression (Fig. 18) and perhaps help
make the variance a little more constant. However,
each point in the SAER score is worth -592.731 points
in the arcsine of the square root of the CWSU
Forecast error divided by 100; not a favorable
simplification. The transformed regression is useful to
validate the original regression. Since the variance is
relatively constant in the transformation and it gives
essentially the same results as the original
regression, then the original results are valid.

4. A normal plot (Fig. 19) reveals residuals that
do not fall perfectly on the line, similar to the normal
plot of the full multiple regression with all four
coefficients (Fig. 20).  Although there is some
departure, it does not appear strong enough to
invalidate the assumption of normality.

With the final multiple regression, non-significant
variables have been eliminated and the number of
coefficients is reduced to two with very little reduction
in statistical significance. This simple, linear equation
can be used to help verify the quality of CWSU stratus
forecasts from 2010, given the POTA and SAER at
SFO:

CWSU Forecast = 721.81 — 12.537(SAER) +
6.904(POTA)

5. SUMMARY

It is difficult to quantify the impact that generalized
weather phenomena have on operations within the
National Airspace System. Thus, weather conditions
should be reduced to simple impact categories in
order to isolate significant correlations between
forecast quality and TFM performance metrics.
Weather Delays, the only TFM impact measure
currently referenced by the NWS, may not be the best
tool available to inform qualitative forecast evaluation.
It is reasonable to expect that ATC efficiency metrics
will enhance the information provided by broader
measures of aviation system performance like
Weather Delays or POTA. In the example of 2010
SFO CWSU stratus ceiling clearing forecasts,
Weather Delays predicted approximately 35% of the
CWSU Forecast quality variance, while the
differences in SAER and POTA improved that
predictability of variance to just over 45%.
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7. ILLUSTRATIONS AND TABLES

Arrival Adjustment

Arrival Demand

Wheels-off: 9:55

Estimated time en route: 2:00 hours (120 minutes)
Wheels-on: 12:05

Start of demand: 9:55 + 120 minutes = 11:55
End of demand: 12:05

Demand occurs in two separate quarter-hour periods
(11:45-11:59 and 12:00-12:14). Only one quarter-
hour period is assigned for demand durations shorter
than 15 minutes. If demand duration is split between
quarters, the start of demand is shifted forward (in this
case, to the 12:00 - 12:14 period.

Arrival Efficiency Rate

Actual arrivals/arrival demand (not to exceed AAR)
Example: BOS, December 6, 2003, from 11:45 to
11:59

Actual arrivals = 6

Arrival demand = 7

AAR =9

Arrival Efficiency Rate = 6/7 = 85.71

Figure 1: Arrival Efficiency Rate Calculation

Departure Demand

Gate-out: 11:05

Unimpeded Taxi-Out Time: 12 minutes
Wheels-off: 11:55

Start of demand: 11:05 + 12 minutes = 11:17
End of demand: 11:55

Demand for this flight occurs in three quarter-hour
periods (11:15 to 11:29, 11:30 to 11:44, and 11:45 to
11:59).

Departure Efficiency Rate

Actual departures/departure demand (not to exceed
ADR)

Example: ORD, December 6, 2003, from 13:30 to
13:44

Actual departures = 21

Departure demand = 25

ADR =27

Departure Efficiency Rate = 21/25 = 84.00

Figure 2: Departure Efficiency Rate Calculation

Wheels-off: 10:35

Estimated time en route: 1:50 (110 minutes)
Ground delay: 30 minutes

Wheels-on: 12:25

Start of Demand = 10:35 + 110 minutes — 30 minutes
=11:55
End of Demand = 12:25

Arrival demand occurs in three separate time periods
(11:45-11:59, 12:00-12:14, and 12:15-12:29). Ground
delay adjustment has a negative impact on arrival
score.

Departure Adjustment

Gate-Out: 11:05

Unimpeded Taxi-Out Time: 12 minutes
Ground delay: 30 minutes

Wheels-off: 11:47

Start of Demand: 11:05 + 12 minutes + 30 minutes =
11:47

End of Demand: 11:47

Departure demand for this flight occurs in 1 time
period: 11:45 to 11:59, but ground delay adjustment
removes any negative impact on departure score.

System Airport Efficiency Rate - SAER
Arrival efficiency rate weighted average + departure
efficiency rate weighted average

Example: ATL on 8/28/2005, for the quarter hour
from 16:00 to 16:14:

Departures: 19

Departure Demand: 20

Departure Rate: 24

Departure Efficiency Rate: 19/20 = 95.00

Arrivals: 21

Arrival Demand: 42

Arrival Rate: 22

Arrival Efficiency Rate: 21/22 = 95.45

Total airport demand: departure demand + arrival
demand = 62

SAER = (20/62) x 95.00 + (42/62) x 95.45 = 30.65 +
64.66 = 95.31

Figure 3: SAER Calculation




Date CWSU Forecast TAER SAER | % On Time Arrivals | Weather Delays

5/14/10 18 97.45 97.46 64.20 70
5/15/10 70 96.70 95.81 74.07 48
5/16/10 65 95.12 93.74 7210 85
6/1/10 50 93.75 90.35 59.57 138
6/2/10 80 96.62 96.52 80.08 27
6/3/10 265 96.77 95.14 8252 13
6/4/10 75 96.56 95 67 7544 14
6/5/10 65 96.52 97.38 90.79 0

6/6/10 70 91.34 89.60 64.39 a8
6/7/10 -113 9527 90.75 49.70 145
6/8/10 42 96.27 90.21 64.80 195
6/9/10 -120 90.77 90.26 38.05 193
6/18/10 -315 96.26 93.38 36.31 245
6/20/10 150 96.48 96.49 8011 [}

6/23/10 92 97.35 93.37 B8 58 41
6/25/10 60 93.54 88.93 5519 111
6/26/10 220 95.50 94.00 82.65 17
7/5/10 117 96.56 9532 7596 11
7/8/10 59 98.27 92.75 66.73 85
7/7/10 35 98.54 9545 70.60 46
7/8/10 5 97.74 9111 61.64 63
7/9/10 55 97.70 91.57 70.35 4
7/10/10 -110 97.52 96.52 7397 9

7/11/10 ] 94.37 94 56 68.32 44
7/12/10 72 97.27 92.35 71.38 55
7/13/10 43 98.28 94 11 7043 58
7/14/10 35 98.62 97.00 78.52 3z
7/17/10 -25 98.54 97.64 8313 4

7/18/10 45 98.23 95.41 8226 0

7/20/10 40 98.46 96.96 63.50 a7
7/21/10 100 97.65 97.93 79.96 10
7/22/10 13 98.78 94 38 70.61 60
7/23/10 -38 99.20 97.61 67.34 54
7/24/10 35 97 55 95 06 7515 20
7/25/10 50 9721 97.38 74.44 24
7/26/10 100 97.58 96.40 70.71 42
7/27/10 55 98.26 96.91 7172 64
7/28/10 -30 97.47 91.39 67.83 Il

7/29/10 -15 97.08 96.44 65.43 62
7/30/10 -10 95 62 9537 B5.59 60
7/31/10 53 98.48 93.25 70.04 3z
8/1/10 45 98.95 97.83 76.16 13
8/2/10 18 93.13 94 95 7318 51

8/3/10 -12 98.41 96.63 74.45 45
8/4/10 -2 97.18 9317 56.24 66
8/53/10 67 96.61 83.91 60.56 106
8/8/10 -20 98.37 92.93 71.51 44
8/9/10 45 97.74 93.79 B6.91 85
8/10/10 10 99.13 98.05 7315 64
8/11/10 -330 95.38 93.15 34.25 276
8/12/10 50 98.79 91.79 B3.85 66
8/13/10 -25 96.48 96.15 64.44 69
3/16/10 30 96.25 93.37 59.38 7

8/17/10 17 95.01 93.90 64.54 76
8/18/10 43 97.56 95.46 70.30 44
3/19/10 45 98.46 95.81 70.78 38
8/20/10 -3 95.88 93.96 60.93 69
8/21/10 -56 98.55 91.53 60.65 a8
3/26/10 -5 94 41 95.95 7514 36
8/27/10 -T2 95.25 96.10 82.77 23
8/28/10 -5 94 58 90.02 57.67 85
3/31/10 -20 96.73 97.01 84 38 30
9/9/10 210 96.74 9343 8259 18
9/13/10 -7 98.60 96.73 60.19 83
9/14/10 43 96.93 96.07 70.63 43
9/15/10 -12 96.03 93.75 4913 90
9/20/10 120 96.86 96.70 84 54 0

9/21/10 -92 94.83 91.64 54.40 95
10/1/10 0 95.81 9488 61.58 a8
10/2/10 20 9584 93.13 83.33 31

10/3/10 -30 94.20 92.32 60.00 66
10/4/10 -200 9517 93.23 60.32 90

Figure 4: CWSU ZOA Stratus Forecast Accuracy, Terminal and System Airport
Efficiency Ratings, Percent on Time Arrivals, and Weather Delays for SFO
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Figure 5: 2010 Data Sample - Weather Delays Interquartile Range Boxplot

Date  CWWSU Forecast) TAER SAER | B0 On Time Amrivals | Weather Delays

8f11/10 -330 95.38 893.1% 3425 276
6/18/10 -315 96.26 93.38 36.31 245
6/8{10 42 9627 a0.21 64.80 195
6/9f10 -120 90,77 80.26 38.0% 193

Figure 6: Weather Delay Outliers — the Four Largest Daily Weather Delay Totals

CWSU ZOA 2010 Stratus Season
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Forecast Error Minutes

Weather Delays

Figure 7: Weather Delays vs. CWSU Forecast Scatterplot with Trend Line




SUMMARY OUTPUT
Regression Statistics
Multiple R 0.58680269
R Square 0.344337397
Adjusted R Squa  0.334970783
Standard Error 7741258418
Observations 72
ANOWA,
df S5 MS F Significance F
Regression 1| 220305.3018 220305.3 36.76223 6.06E-08
Residual 70 419489.5732 5992708
Total 71 639794875
Coefficients | Standard Error . t Stat P-value | Lower 85% Upper 95%
Intercept TB.77226833 143484661 5489944 6.06E-07 5015517846 107.3894
Weather Delays = -1.072449716 0.1768789 -6.06319 6.06E-08 -1.42522327 -0.719676
Figure 8: Regression statistics and analysis of variance for Weather Delays
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Figure 9: Plot of CWSU Forecast Regression Residuals

Pearson Correlations

CWSU Forecast] On Time Arrivals SAER TAER Weather Delays
CWSU Forecast 1.000 0.617 0.083 0.172 -0.587
On Time Arrivals 1.000 0.541 0.349 -0.875
SAER 1.000 0.451 -0.533
TAER 1.000 -0.373
Weather Delays 1.000
Pearson Probabilities

CWSU Forecast| On Time Arrivals SAER TAER Weather Delays
CWSU Forecast |- 0.000 0.488 0.149 0.000
On Time Arrivals - 0.000 0.003 0.000
SAER - 0.000 0.000
TAER - 0.001
Weather Delays -

Figure 10: Correlation Matrix (Significant Correlations in Red)
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Figure 11: Scatterplot Matrix
SUMMARY OUTPUT
Regression Statistics
Multiple R 0701077117
R Square 0.491509124
Adjusted R Square 0.46115146
Standard Error 696826341
Observations 72
ANOVA
df 55 MS F Significance F
Regression 4 3144650189 78616.25 16.19081 2.52737E-09
Residual 67 325329.8561 4855.669
Tatal 71 639794 875
Coefficients | Standard Error | Stat P-value | Lower 95% | Upper 95%
Intercept 793.0795398 539.402916 1.470292 0146164 -283.5734838 1869.7326
TAER 2522592448 5.376775043 0.469165 0640475 -8.209498417 13.254683
SAER -14.00909076 3.907493838 -3.58519 0.000634 -21.80848325 -6.209698
% On Time Arrivals| 4809110484 1.562080576 3.078657 0.003013 1.691183744 79270372
Weather Delays -0.525693648 0.334433992 -1.57189 0.120687 -1.193226874 0.1415396

Figure 12: Regression Stats and Analysis of Variance for All Coefficients




SUMMARY OUTPUT
Regression Statistics
Multiple R 0.685292707
R Square 0.469626094
Adjusted R Square 0.454252937
Standard Error 7012726597
Observations 72
ANOVA
df S5 MS F Significance F

Regression 2 3004643682 1602321841 3054845  3.14836E-10
Residual 69 339330.5068 4917.833432
Total 71 639794.875

Coefficients | Standard Error t Stat P-value Lower 95%  Lpper 95%)
Intercept 721.8105529 319.1754735 2.261485023 0.026884 85.07310308 1358.548
SAER -12.5370061  3.687580752 -3.399791608 | 0.001125 -19.89352613 -5.15049
% On Time Arrivals 5.90386418  0.889819296 7.768726084 552E-11) 5128723807 B.673005

Figure 13: Regression Statistics and Analysis of Variance for SAER and POTA Prediction of CWSU Forecast
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Figure 14: Scatterplot of Observed and Predicted CWSU Forecast Quality
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Figure 15: Scatterplot of Residuals and Predicted CWSU Forecast Scores
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Figure 16: Percent on Time Arrival Residuals Plot
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Figure 17: SAER Residual Plot




Transformation of SAER Residuals
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Figure 18: Transformed SAER Residual Plot
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Figure 19: Normal P-plot of Residuals
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Figure 20: Normal P-plot of Full Regression Residuals
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