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1. INTRODUCTION 
 

The National Weather Service (NWS) uses 
‘probability of detection’ (POD) and ‘false alarm ratio’ 
(FAR) to assess forecast accuracy of many products 
and services, including aviation forecasts like TAFs—
Terminal Aerodrome Forecasts (National Weather 
Service 2011).  POD and FAR provide helpful 
quantitative verification information about forecast 
categories, such as cloud cover and ceiling height, 
visibility, wind direction and speed, etc.  Each basic 
category can have a separate and significant impact 
on aviation operations, so it is useful to differentiate 
between them.   

 
Evaluation of meteorological forecast phenomena 

becomes complex when categories and impacts are 
not isolated, such as in the case of “convection”, or 
thunderstorms.  The presence of deep convection can 
be verified with equipment like radar and lightning 
detection sensors, but it is not a category that 
specifically describes singular aviation impacts.  
Thunderstorms possess several threat characteristics, 
any of which can alternately cause the greatest 
impact on aviation operations at a moment in time.  
For example, a small, isolated, relatively low-topped 
thunderstorm within ten miles of an airport may 
impact en route aviation operations to some degree, 
but also generate a significant surface wind speed 
and direction change at the nearby terminal.  Such an 
occurrence could have a major impact on aviation 
operations, or almost no impact, depending on the 
airport’s runway configuration, volume of traffic, flight 
mix, wind detection equipment, air traffic planning, 
etc.  To reduce the complexity associated with 
multiple variables, it makes sense to evaluate weather 
forecasts in terms of basic categories and avoid 
generalized criteria like convection. 

 
According to Steiner et al. (2009), weather 

forecast information needs to be fully integrated into 
the Traffic Flow Management (TFM) decision-making 
process—translated into aviation impact forecasts—in 
order to be most effective.  This is one of the key 
goals for both the Next Generation Air Transportation 
System and the Single European Sky ATM Research.  
As forecasts already are an element of TFM success, 
it seems reasonable now, and in the future, to 
evaluate forecasts in terms of TFM impact.   
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 During the past few years, “delays” have been 
used by the NWS as an informal measure of forecast 
impact on aviation operations.  While this seems 
intuitively reasonable, delays do not measure forecast 
quality directly and are a broad aviation impact 
category. Evans et al. (2004) proposed that direct 
comparison of delays before and after a forecast 
system is introduced is very hard to carry out in 
practice, even though it appears quite straightforward, 
and that a “decision/modeling” [qualitative] method is 
the only feasible way to assess potential improvement 
in system products.   
 
 This is undoubtedly true in the analysis of 
generalized forecast categories, e.g., convection.  
However, we know that forecasts influence TFM 
decisions and impacts, so it should theoretically be 
possible to reduce forecast information parameters 
and impact variables to a sufficient degree that a 
significant correlation exists between the two.  This 
concept can be applied to ongoing daily and seasonal 
evaluation of forecast quality and impact.  Pfleiderer 
et al. (2007) assert that, when making forecast 
system deployment decisions prospectively, 
projections should be validated against objective 
metrics following implementation, specifically with 
regard to metrics that describe efficiency. Therefore, if 
measures like delays are used in forecast evaluation, 
an efficiency metric should be included in the analysis 
to at least account for history effects. 

 
Aviation System Performance Metrics (ASPM) 

provide information about TFM and Air Traffic Control 
(ATC) performance that can be used to 
supplement/enhance delay information.  ASPM 
Efficiency Rates were specifically created to measure 
an ATC facility’s ability—and by extension, that of the 
air traffic system—to do what it says in can do 
(Pfleiderer et al. 2007).  Together with broader 
measures of TFM performance, such as ASPM 
“Percent on Time Arrivals” or Air Traffic Operations 
Network (OPSNET) “Weather Delays,” this kind of 
efficiency metric should aid in the evaluation of 
forecast performance.  The goal of this study is to 
demonstrate, via 2010 San Francisco stratus season 
forecasts, the potential use of ASPM and OPSNET 
Weather Delays as objective metrics and predictors of 
specific, isolated forecast information.  
 
2. DELAYS AND ASPM 
 
 The ASPM database is used by the Federal 
Aviation Administration (FAA) to document and 
evaluate TFM performance.  The metrics are 



demand-based.  Demand is defined as the number of 
aircraft that intend to land at a specific airport, or are 
ready to depart from the airport, by unit of time 
(Federal Aviation Administration 2011a). 
 

ASPM combines data from the FAA en route 
system (Host) on aircraft positions, flight plans, 
Official Airline Guide schedules, Airline Service 
Quality Performance, and (for some of the major 
carriers) Out/Off/On/In (OOOI) data. OOOI data 
consists of: 

 
• Actual gate departure time (“Out”) 
• Actual flight takeoff time (“Off”) 
• Actual flight landing time (“On”) 
• Actual gate arrival time (“In”) 

 
 Hence, it is possible to make much more detailed, 
objective, quantitative studies of where a flight delay 
occurred than is the case with OPSNET delays 
(Evans et al. 2004).  Three ASPM types—two 
efficiency ratings and an arrivals metric—were chosen 
to supplement OPSNET Weather Delay information in 
this study. 

 
2.1 ASPM Percent on Time Arrivals 
 
 The Percent on Time Arrivals (POTA) metric used 
in this study simply describes the number of flights 
that arrive at a gate less than 15 minutes past the 
flight plan time in relation to the total number of 
Arrivals for Metric Computation—in other words, the 
number of on time arrivals divided by total arrivals.  
The last scheduled flight plan before Wheels Off time 
is used for metric calculations (Federal Aviation 
Administration 2011b).   

 
2.2 ASPM Demand-based Efficiency Rates 

 
 [Efficiency Rate definitions/examples derived from 
Wine (2005) and Diana (2005).]  
 
 Arrival Efficiency Rate is used to determine how 
well demand for arrivals is met.  It is the number of 
actual airport arrivals divided by the lesser of arrival 
demand or the airport arrival rate.  These terms are 
defined as: 
 

• Actual arrivals:  how many aircraft landed 
during a quarter hour 

• Arrival demand:  how many aircraft wanted to 
land during that quarter hour 

• Airport Arrival Rate (AAR):  the facility-set 
number of aircraft expected to land during 
that quarter hour 

 
Demand is not derived from scheduled traffic, but 

in the following manner for each flight: 
 
• Start of demand = wheels-off time + filed en 

route time 
• End of demand = wheels-on time (touch-

down) 
 

 An example of the Arrival Efficiency Rate 
calculation is provided in Fig. 1. 
 

Departure Efficiency Rate is the number of actual 
departures divided by the lesser of departure demand 
or the airport departure rate. These terms are defined 
as:  
 

• Actual departures:  how many aircraft 
departed during a specific quarter hour 

• Departure demand:  how many aircraft 
wanted to depart during that quarter hour 

• Airport Departure Rate (ADR):  the facility-set 
number of aircraft expected to depart during 
that quarter hour 

 
 Departure demand is not derived from the 
scheduled traffic, but in the following manner for each 
flight: 
 

• Start of Demand = gate-out time + 
unimpeded taxi-out time 

• End of Demand = wheels-off time (lift-off) 
 
 Fig. 2 shows an example of the Departure 
Efficiency Rate calculation. 
 
 System Airport Efficiency Rate (SAER) is a 
weighted average of the Arrival Efficiency Rate and 
Departure Efficiency Rate.  Arrivals and departures 
for SAER are calculated in terms of aircraft demand 
per quarter-hour increment.  An example of the SAER 
calculation is provided (Fig. 3). 
 
 Terminal Airport Efficiency Rate (TAER) is similar 
to SAER, but arrival demand starts at 100 miles from 
the airport and compares an average wheels-on time 
vs. actual wheels-on time. TAER is reported for a time 
period of an hour or more. For reports covering a 
period greater than an hour, the reported TAER is a 
weighted average of every hour in the period (Federal 
Aviation Administration 2011a).   
 
 Theoretically, Efficiency Ratings should provide 
relative information about TFM performance that can 
help isolate forecast quality.  For example, if the 
POTA measure is fairly average for a specific weather 
scenario, terminal, and day, but the SAER and TAER 
were very low for the given situation, one might 
expect to find that high quality forecast information 
helped limit the number of delayed arrivals.  The 
hypothesis that SAER or TAER enhance broader 
TFM metrics like Weather Delays and POTA in the 
prediction of forecast quality will be tested with 
statistical regression in Section 4. 
 
 2.3 OPSNET Weather Delays 
 

The FAA’s OPSNET database contains delay 
causality information, unlike that described by POTA 
and other ASPM information.  Delays are assigned to 
five major categories within OPSNET:  Weather, 
Volume, Equipment, Runway, and Other.  This is a 
major strength, but there are some major deficiencies 
associated with OPSNET delays too; delays are 



reported by humans at ATC facilities and can be 
inaccurate, are excluded if initiated by pilot/airlines, 
and are not reported if less than 15 minutes.  Delay 
reporting methods are also subjective and differ by 
facility. (Evans et al. 2004). 

 
Section 8.f.1 of FAA Order 7210.55F (2011d) 

describes a list of impact conditions, or constraints, 
used to define/assign delays to the Weather category.  
This list of impact conditions includes low ceilings, the 
meteorological condition of concern used in this 
research. 
  
3. DATA SAMPLE 
 
 Unfortunately, there are few situations where a 
single meteorological condition creates consistent 
impacts on aviation.  However, certain operationally 
significant weather phenomena do occur on a regular 
basis and at relatively regular times, such as stratus 
ceilings at San Francisco (SFO).  Low stratus at SFO 
negatively affects the ability of ATC to operate and 
TFM to plan effectively.  Stratus ceilings are disruptive 
to flights on approach to the airport; the reduction in 
visibility at relatively low altitudes requires greater 
spacing between flights for safety reasons.  This need 
for space reduces the number of flights that can land 
at the airport per hour and usually causes delays.  
There is immediate improvement in arrival capacity 
and capability when the stratus ceiling lifts or clears 
out of the approach corridor. 
 
 The 2010 stratus season exhibited some 72 
typical “Stratus Days” for which clearing times were 
predicted, observed, and recorded by the Oakland Air 
Route Traffic Control Center (ZOA ARTCC) Center 
Weather Service Unit (CWSU).  The raised 
acceptance rate, or moment when the AAR was 
increased by FAA Traffic Management to 
accommodate inbound flight demand, was used to 
define the actual stratus improvement time.  AAR is a 
dynamic parameter specifying the number of arrival 
aircraft that an airport, in conjunction with terminal 
airspace, can accept under specific conditions 
throughout any consecutive sixty-minute period 
(Federal Aviation Administration 2011c).  AAR’s are 
raised at SFO when pilots can maintain visual 
separation between aircraft and when Air Traffic 
Control can accommodate a greater number of 
arrivals.  Raised AAR represents the stratus 
improvement condition that the CWSU forecasts.   
 
 An initial clearing forecast is provided to TFM 
decision makers by 12:45 UTC each Stratus Day, 
when it is used in a planning teleconference.  The 
CWSU forecaster differentiates between “typical” and 
“non-typical” stratus events; a typical stratus event 
occurs when on-shore (west) winds prevail, without 
the presence of precipitation or synoptically driven 
influences like fronts.  Low ceilings reduce airport 
capacity significantly, but operations remain in the 
optimal west-approach runway configuration.  

Essentially, just one weather condition/category 
impacts the AAR on typical Stratus Days.  
 
 The data sample used for evaluation here (Fig. 4) 
includes the 12:45 UTC “CWSU Forecast“ clearing 
time and corresponding ASPM/OPSNET metrics for 
each SFO Stratus Day in 2010.  The CWSU Forecast 
data represents a forecast error time in minutes; this 
time is the difference between forecast clearing time 
and actual clearing time (raised AAR).  Positive 
CWSU Forecast numbers describe an actual clearing 
time that occurred earlier than forecast; negative 
numbers mean the stratus deck lingered over the Bay 
Area longer than expected by the forecaster.  It is 
assumed that a smaller error or smaller difference 
between forecast clearing time and actual clearing 
time equates to a more accurate, higher quality 
forecast.  This is particularly true with regard to 
negative CWSU Forecast numbers.   However, large, 
positive CWSU Forecast errors should not typically 
result in more weather delays; when the stratus deck 
clears relatively early, ATC can accommodate more 
flights and incur fewer delays.  En route flights that 
arrive from the East Coast during the late morning 
hours can land without the need for an accurate 
forecast.  Efficiency rating metrics that describe TFM 
performance are again an important element of the 
analysis here; large delay numbers on large positive 
forecast error days would presumably be an indicator 
of low efficiency.  While a clearly communicated and 
accurate forecast should enhance the chances for 
efficient operations, there are a multitude of other 
variables not related to forecast interpretation that can 
cause Weather Delay numbers to increase.  Among 
these are traffic complexity, facility staffing, and ability 
of planners to reach consensus, all of which can 
potentially influence efficiency. 
 
4. DATA ANALYSIS 
 
4.1 Descriptive Statistics 
 
 A boxplot of Weather Delays (Fig. 5) shows the 
positive skewness of the sample, with a long whisker 
from around 90 to 150 and short whisker from 0 to 30.  
The box represents the inter-quartile range, with a 
median value of just over 50 Weather Delays and a 
mean value (red dashed line) of just over 60, which 
also emphasizes the positive skew.  There is 
relatively low variability; the majority of days are within 
the 30 to 90 Weather Delay range.  The sample is 
heavy-tailed, with three moderate outliers (two of 
them overlap in Fig. 5) and one extreme outlier.  
These outliers (Fig. 6) are unusual, but appear to be 
an important aspect of the distribution.  The CWSU 
Forecast was over 300 minutes in error on the two 
largest weather delay days.  SAER is around 90 on 
the other two outlier days, a relatively low efficiency 
rating with regard to this data sample that appears to 
explain the two remaining outlier values.  These four 
outliers belong with the other data values; their 



removal from the data sample regression reduces 
correlation significantly.   
 
4.2 Linear Regression 
 
 [This approach is similar to that used by Berk and 
Carey 2000, 299—367.]  
 
 A scatterplot of CWSU Forecast error and 
Weather Delays (Fig. 7) highlights data relationships.  
Generally, forecast clearing times are within 100 
minutes of actual clearing times and Weather Delays 
are below 150 on typical Stratus Days.  Early clearing 
times, +100 minutes relative to forecast clearing 
times, tend to correlate with lower Weather Delay 
numbers.  ATC is able to recover and deliver more 
arrivals to the airport during peak morning traffic times 
on these days.   
 
 Note that on days when the greatest number of 
Weather Delays occurred, stratus cleared very late in 
relation to the forecast expectation.  The scatterplot of 
Weather Delays in Fig. 7 helps illustrate the linear 
relationship and negative correlation with CWSU 
Forecast error.  The trend line for this data set 
crosses the x-axis at approximately 73; thus, if a 
linear relationship were representative for the 2010 
season, a perfect Stratus Day clearing forecast would 
result in about 73 Weather Delays, given “average” 
ATC efficiency. 
 
 One of the goals of statistical regression is 
prediction.  To evaluate the use of weather delays as 
a predictor of forecast quality, a regression can be 
used to calculate the least-squares estimates (Fig. 8).  
The regression of CWSU Forecast and Weather 
Delay data samples yields an R2 value (coefficient of 
determination) of 0.344, which indicates that 34.4% of 
the variation in CWSU Forecast quality can be 
explained by the change in Weather Delays.  From 
the Analysis of Variance (ANOVA) table, one (1) 
degree of freedom is attributed to the regression and 
that the sum of squares attributed to residuals is 
nearly double that of the regression.  An F-ratio of 
36.76 and P-Value of 6 x 10-8 indicate that the 
regression is statistically significant.   
 
 A plot of the residuals (differences between the 
observed CWSU Forecast values and the regression-
predicted numbers) can be used to verify that this 
data does not violate normal distribution.  The plot of 
residuals (Fig. 9) indicates that, although the points 
do not fall perfectly on the line, the departure is not 
strong enough to invalidate our assumption of 
normality.   
 
 Fig. 10 shows a correlation matrix of the full data 
sample.  CWSU Forecast correlates meaningfully with 
On Time Arrivals and Weather Delays, with Multiple R 
statistics of 0.617 and -0.587 respectively.  Each has 
a Pearson Probability (P-Value) less than 0.05.  
Meanwhile, the Airport Efficiency Ratings do not show 

a meaningful correlation with CWSU Forecast, which 
is a desired result.  A scatterplot matrix (Fig. 11) 
illustrates the correlation matrix relationships.  CWSU 
Forecast data exhibits a roughly linear relationship 
with both POTA and Weather Delays.  The strongest 
linear relationship lies between POTA and Weather 
Delays; this correlation stands out clearly within the 
matrix and has a Multiple R of -0.875 (R-square 
0.766). 
 
 A multiple regression of all four metric categories 
together with CWSU Forecast yields improvements in 
the statistical relationship (Fig. 12), an R-square value 
of 0.46—46% of the variance in CWSU Forecast error 
is due to the differences in these predictors.  The 
prediction equation, derived from the Coefficients 
column, is:   
 
CWSU Forecast = 793.08 + 2.52(TAER) – 
14.01(SAER) + 4.81(POTA) – 0.53(Weather Delays)  
 
 SAER, while not a meaningful predictor of CWSU 
Forecast quality as a single variable, becomes the 
most important predictor in the multiple regression 
calculation, with a P-value of .0006.  The t-stat, or t-
value, for SAER is -3.59.  The probability of a t-value 
this large or larger in absolute value is about .0006, 
well below the 0.05 significance level.  So we reject 
the null hypothesis that the coefficient is 0 at the 5% 
level and accept the alternative hypothesis.  Note that 
only the coefficients for SAER and POTA have 
significant P-values.  Therefore, we should not focus 
this analysis on TAER and Weather Delays.   
 
 A regression of SAER and POTA (Fig. 13) 
produces similar results to the four-coefficient multiple 
regression, with an adjusted R-square of 0.45 and 
stout significance (P-value 3 x 10-10).  Now, a test for 
regression assumptions:   
 
 1. A plot of the CWSU Forecast values against 
the predicted values (Fig. 14) shows the success of 
the regression.  The regression fits the data. 
 
 2. A plot of predicted values and residuals of 
the CWSU Forecast values (Fig. 15) magnifies the 
vertical spread of the data and verifies the regression 
assumptions.  No curved pattern is apparent, and 
there is no trend that might suggest non-constant 
variance. 
 
 3. A plot of residuals against the individual 
predictor variables (Fig. 16 and 17) can reveal 
problems that are not clear from the regression 
predicted residuals in Fig. 15.  It appears that there 
are no curves or trends with regard to POTA, 
although the SAER data appears to narrow somewhat 
as values decrease.  This impression might be 
lessened if the outlier value ~84 is removed.  To test 
non-constant variance, we can perform an arcsine-
square root transformation on SAER: 
 



Transformed SAER = sin-1 (SQ RT of SAER/100)   
  
 The transformed SAER variables yield similar 
results in the regression (Fig. 18) and perhaps help 
make the variance a little more constant.  However, 
each point in the SAER score is worth -592.731 points 
in the arcsine of the square root of the CWSU 
Forecast error divided by 100; not a favorable 
simplification.  The transformed regression is useful to 
validate the original regression.  Since the variance is 
relatively constant in the transformation and it gives 
essentially the same results as the original 
regression, then the original results are valid. 
 
 4. A normal plot (Fig. 19) reveals residuals that 
do not fall perfectly on the line, similar to the normal 
plot of the full multiple regression with all four 
coefficients (Fig. 20).  Although there is some 
departure, it does not appear strong enough to 
invalidate the assumption of normality.   
 
 With the final multiple regression, non-significant 
variables have been eliminated and the number of 
coefficients is reduced to two with very little reduction 
in statistical significance.  This simple, linear equation 
can be used to help verify the quality of CWSU stratus 
forecasts from 2010, given the POTA and SAER at 
SFO:   
 
CWSU Forecast = 721.81 – 12.537(SAER) + 
6.904(POTA) 
 
5. SUMMARY 
 

It is difficult to quantify the impact that generalized 
weather phenomena have on operations within the 
National Airspace System.  Thus, weather conditions 
should be reduced to simple impact categories in 
order to isolate significant correlations between 
forecast quality and TFM performance metrics.  
Weather Delays, the only TFM impact measure 
currently referenced by the NWS, may not be the best 
tool available to inform qualitative forecast evaluation.  
It is reasonable to expect that ATC efficiency metrics 
will enhance the information provided by broader 
measures of aviation system performance like 
Weather Delays or POTA.  In the example of 2010 
SFO CWSU stratus ceiling clearing forecasts, 
Weather Delays predicted approximately 35% of the 
CWSU Forecast quality variance, while the 
differences in SAER and POTA improved that 
predictability of variance to just over 45%.  
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7. ILLUSTRATIONS AND TABLES 

 
 

Arrival Demand 
Wheels-off:  9:55 
Estimated time en route:  2:00 hours (120 minutes) 
Wheels-on:  12:05 
 
Start of demand:  9:55 + 120 minutes = 11:55 
End of demand:  12:05 
 
Demand occurs in two separate quarter-hour periods 
(11:45-11:59 and 12:00-12:14).  Only one quarter-
hour period is assigned for demand durations shorter 
than 15 minutes.  If demand duration is split between 
quarters, the start of demand is shifted forward (in this 
case, to the 12:00 - 12:14 period. 
 
Arrival Efficiency Rate 
Actual arrivals/arrival demand (not to exceed AAR) 
Example: BOS, December 6, 2003, from 11:45 to 
11:59 
Actual arrivals = 6 
Arrival demand = 7 
AAR = 9 
Arrival Efficiency Rate = 6/7 = 85.71 

Figure 1: Arrival Efficiency Rate Calculation 
 

 
Departure Demand 
Gate-out:  11:05 
Unimpeded Taxi-Out Time:  12 minutes 
Wheels-off:  11:55 
 
Start of demand:  11:05 + 12 minutes = 11:17 
End of demand:  11:55 
 
Demand for this flight occurs in three quarter-hour 
periods (11:15 to 11:29, 11:30 to 11:44, and 11:45 to 
11:59). 
 
Departure Efficiency Rate  
Actual departures/departure demand (not to exceed 
ADR) 
Example: ORD, December 6, 2003, from 13:30 to 
13:44 
Actual departures = 21 
Departure demand = 25 
ADR = 27 
Departure Efficiency Rate = 21/25 = 84.00 

Figure 2: Departure Efficiency Rate Calculation 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Arrival Adjustment 
Wheels-off: 10:35 
Estimated time en route: 1:50 (110 minutes) 
Ground delay:  30 minutes 
Wheels-on:  12:25 
 
Start of Demand = 10:35 + 110 minutes – 30 minutes 
= 11:55 
End of Demand = 12:25 
 
Arrival demand occurs in three separate time periods 
(11:45-11:59, 12:00-12:14, and 12:15-12:29). Ground 
delay adjustment has a negative impact on arrival 
score. 
 
Departure Adjustment 
Gate-Out:  11:05 
Unimpeded Taxi-Out Time:  12 minutes 
Ground delay:  30 minutes 
Wheels-off:  11:47 
 
Start of Demand:  11:05 + 12 minutes + 30 minutes = 
11:47 
End of Demand:  11:47 
Departure demand for this flight occurs in 1 time 
period: 11:45 to 11:59, but ground delay adjustment 
removes any negative impact on departure score. 
 
System Airport Efficiency Rate - SAER 
Arrival efficiency rate weighted average + departure 
efficiency rate weighted average 
 
Example:  ATL on 8/28/2005, for the quarter hour 
from 16:00 to 16:14: 
Departures: 19  
Departure Demand: 20  
Departure Rate: 24  
Departure Efficiency Rate:  19/20 = 95.00 
 
Arrivals: 21 
Arrival Demand: 42 
Arrival Rate: 22 
Arrival Efficiency Rate:  21/22 = 95.45 
 
Total airport demand:  departure demand + arrival 
demand = 62 
 
SAER = (20/62) x 95.00 + (42/62) x 95.45 = 30.65 + 
64.66 = 95.31 

Figure 3: SAER Calculation 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: CWSU ZOA Stratus Forecast Accuracy, Terminal and System Airport 
Efficiency Ratings, Percent on Time Arrivals, and Weather Delays for SFO 
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Figure 5:  2010 Data Sample - Weather Delays Interquartile Range Boxplot  

 
 

 
 
 

 Figure 6:  Weather Delay Outliers – the Four Largest Daily Weather Delay Totals 

 
 

 
 

CWSU ZOA 2010 Stratus Season

y = -1.0724x + 78.772

-400

-300

-200

-100

0

100

200

300

0 50 100 150 200 250 300

Weather Delays

Fo
re

ca
st

 E
rr

or
 M

in
ut

es

 Figure 7:  Weather Delays vs. CWSU Forecast Scatterplot with Trend Line 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Figure 8:  Regression statistics and analysis of variance for Weather Delays 
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 Figure 9:  Plot of CWSU Forecast Regression Residuals 

Pearson Correlations
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 Figure 10:  Correlation Matrix (Significant Correlations in Red) 
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 Figure 11:  Scatterplot Matrix  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Figure 12:  Regression Stats and Analysis of Variance for All Coefficients 

 



 
 
 

 
 
 

 
 
 

 
 
 

 Figure 13:  Regression Statistics and Analysis of Variance for SAER and POTA Prediction of CWSU Forecast 
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 Figure 14:  Scatterplot of Observed and Predicted CWSU Forecast Quality 
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 Figure 15:  Scatterplot of Residuals and Predicted CWSU Forecast Scores 
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 Figure 16:  Percent on Time Arrival Residuals Plot 
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 Figure 17:  SAER Residual Plot 



 

 
 

 
 
 
 
 
 

 

 
 
 
 
 
 

Transformation of SAER  Residuals 
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  Figure 18:  Transformed SAER Residual Plot 
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 Figure 19:  Normal P-plot of Residuals 
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 Figure 20:  Normal P-plot of Full Regression Residuals 
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