This study forecasts wildfire potential rather than actual burn statistics to avoid complications due to human interactions. This wildfire threat potential is based upon the Keetch-Byram Drought Index (KBDI). The KBDI is well suited as a seasonal forecast medium. It is based on daily temperature and rainfall measurements and responds to changing climate and weather conditions on time scales of days to months, and this index is high during dry warm weather patterns and low during wet cool patterns. The KBDI has been widely used in forestry in the Southeastern United States since its development in the 1970's, with foresters and firefighters have a good level of familiarity with the index and its applications. The KBDI is calculated daily and used as an index by wildfire managers.
This study calculates wildfire potential using a statistical method known as bootstrapping. Many datasets contain approximately a half-century of data, and the limited dataset will introduce biases. Bootstrapping can remedy bias by simulating thousands of years of data, which retain the climatology for the past half-century. Bootstrapping preserves the mean but not the variance. By incorporating this method, this study will improve long-term forest fire risks that will become useful for those living or working near forests and assist in managing forests and wildfires.
The Southeast Climate Consortium will also be issuing wildfire risk forecast for Florida and parts of Alabama and Georgia based on ENSO phase and the KBDI. Climate information and ENSO predictions are better served by incorporating them with known climate indices that are routinely used in the forestry sector. Wildfire managers and foresters operationally use the KBDI to monitor and predict wildfire activity (O'Brien et al. 2002). Meteorologists at the Florida Division of Forestry have demonstrated the validity of the KBDI as an indicator of potential wildfire activity in Florida (Long 2004). They showed that the value of the KBDI is not as important as the deviation from the monthly average. The wildfire risk forecast is based on the probabilities of KBDI anomalies and will present the probabilities associated with large deviations from the seasonal normal.