Global energy budget, flux integer tables and the greenhouse effect of clouds $\mathbf{F} = \mathbf{F}_0 + \Delta \mathbf{F}$ G(all) – G(clear) = OLR(clear) - OLR(all) $= 1 \text{ UNIT} = 26.68 \text{ Wm}^2 \Rightarrow \text{ULW}$ = [] = OLR(clear) – OLR(cloudy) = LWCRE / $\beta_0 \equiv 1$ UNIT = 44.47 Wm⁻² \Rightarrow ULW = G(cloudy) – G(clear) **METRICS** = STI(clear) = 1 UNIT = 66.70 $Wm^{-2} \Rightarrow ULW$ $f_0(all) = 1;$ $1/f_0(\text{clear}) = 1$ UNITS **F**₀ **RELATIONSHIPS** $= 26.68 \text{ Wm}^{-2}$ OLR(all) = 9ASR ⇒ <u>9</u> UNIT + EEI OLR(outgoing LW all • E(SFC, all) =2OLR(all) + LWCRE =EEI = **0.58** 133.4 **99.3** 340.0 $ASR = 240.7 \text{ Wm}^{-2}$ 240.12 **OLR(all) + OLR(clear)** absorbed solar radiation RSR outgoing LW overcast outg E(SFC, cloudy) =reflected **OLR**(cloudy) + **OLR**(clear) $\beta \times OLR(cloudy) = \beta$ + $(1 - \beta) \times$ solar **ISR** $\alpha_0 = 0.293$ radiaincoming E(SFC, clear) =tion solar absorbed by CTS(atm) = 1CTS(all) =solar 2OLR(clear) atmosphere and clouds radiation • Solar absorbed by surface 186.8 SAA = 3213.4 **80.0** serves the energy content of the LW emitted by clouds and at all-sky greenhouse effect. = G(all) • The cloud-covered part of the ULW × β_0 = OLR(all) (STI(all)/S $\beta_{\rm eff} = \beta_{\rm obs} \times \epsilon_{\rm cloud} = 0.60$ surface radiates as much energy as in the outgoing longwave radiation: LWQ DLR(all) G(all) $ULW \times \beta_{eff} = OLR(all)$ 80.0 373.5 26.68 LAA = 1DLR • 'Cooling to space': ensibl latent atmosphere and tmospl All-sky: clouds LWQ + CTS(atm) = 0, $-(LWQ = ULW - OLR - DLR) = \frac{7}{2} = SAA + SH + LH = CTS(atm)$ LAA(all) = 2CTS(atm) = 14 = LWLWQ + CTS(all) = LWCRE.**Cloudy sky:** E(ATM, all) = SAA + SH + LH + LAA = CTS(all) + DLR(all) = 21 = E(SFC) + CTS(all) = 21 = E(SFC) $\beta_{eff} \times [LWQ + CTS(atm, cloudy)]$ = -LWCRE/526.68 **Clear-sky:** 160.7 0.58 53.4 400.2 0.08 $(1 - \beta_{eff}) \times [LWQ + CTS(clear)]$ = LWCRE / 5 EEI LH = 3DLR SAS - IMB = 1SH = 1ULW = <u>15</u> = <u>9</u> = <u>6</u> NSL =• The effective LW-opaque single-layer cloud area fraction solar absorbed surface surfac thermals evaporation surface LW up surface LW net is equal to the all-sky transfer function, $\beta_{\text{eff}} = f_0(\text{all})$, and E(SFC, all) = SAS + DLR = SH + LH + ULW + EEI = 19 + EEI = 20LR(all) + LWCI $f_0(\text{all}) \times f_0(\text{clear}) = g_0(\text{all}).$ • From a surface perspective, **CLEAR-SKY** $f(\text{clear}) = \text{OLR}(\text{clear}) / \text{ULW} = 2/3 \Rightarrow \text{STI}(\text{clear}) = 1; \text{G}(\text{clear}) = 2; \text{CTS}(\text{clear}) = 3; \text{OLR}(\text{clear}) = 3; \text{CTS}(\text{clear}) =$ the energy being lost in the all-sky atmospheric window $(1-\beta) \times G(\text{clear}) = 2;$ $(1-\beta) \times \text{CTS}(\text{clear}) = 3;$ $(1-\beta) \times \text{OLR}(\text{clear}) = 4;$ $(1-\beta) \times \text{LAA}(\text{clear}) = G(1-\beta) \times (1-\beta) \times (1-\beta)$ is gained back by the **CONTRIBUTION** LWQ + CTS(clear) = LWCRE / 2 = + 13.3 Wm⁻²; $(1-\beta) \times [LWQ + CTS(clear)] = LWCRE$ greenhouse effct of clouds: LWCRE = STI(all)= $(1 - \beta_{\text{eff}}) \times \text{STI(clear)}$. $f(\text{cloudy}) = \text{OLR}(\text{cloudy})/\text{ULW} = 5/9 \Rightarrow G(\text{clear}) = 3; \text{CTS}(\text{atm, cloudy}) = G(\text{cloudy}) = 4; \text{OLH}$ **CLOUDY** $\beta \times G(cloudy) = 4$; $\beta \times CTS(atm, cloudy) = 4$; $\beta \times OLR(cloudy) = 5$; $\beta \times LAA(cloudy) = 6$ HTED • A 'grid' albedo position = **CONTRIBUTION** LWQ + CTS(atm, cloudy) = - LWCRE / 3 = -8.86 Wm⁻²; $\beta \times [LWQ + CTS(atm, cloudy)] = \alpha_0 = 1 - \sin 45^\circ = 1 - \sqrt{2}/2$ $LWQ = -186.8 \pm 6$ $SH = 25 \pm 4$ $ULW = 398.3 \pm 4$ Net SFC LW = 53.4 ± 5 DLR • F observed data ⇒ $SAS = 160.1 \pm 5$ $LH = 81 \pm 4$ $OLR(all) = 240.1 \pm 2$ $OLR(clear) = 268.1 \pm 3$ STI(c CERES EBAF Ed4.0 ● Their sources ⇒ CERES EBAF Ed4.0

L'Ecuyer et al. (2015)

Wild et al. (2015)

15 $OLR(clear) = 10$ $G(clear) = 5$ $G(clear) = 5$ 9 $OLR(clear) = 6$ $G(clear) = 3$ 6 $OLR(clear) = 4$ $G(clear) = 2$		Integer tables of Earth's energy flows. F ₀ values in unit flux:	
elear) = <u>10</u> = <u>6</u> = <u>4</u>	OLR(clear) = 266.8	ALL-SKY = 2	6.68 Wm*
106 7	CTS(clear) = 200.1	STI(all) LWCRE	= 1 = 26.68 = 1 = 26.68
bing LW cloudless	STI(clear) = 66.7	SH NSL(all)	= 1 = 26.68 = 2 = 53.4
OLR(clear) = 4	CTS(clear)/ULW= <mark>1/2</mark>	LH SAA(all)	= <u>3</u> = 80.0 = <u>3</u> = 80.0
$\Gamma I(all) = 1$	STI(clear)/ULW=1/6	G(clear)	$=\frac{5}{5}$ = 133.4
26.68	G ≡ ULW – OLR	SAS(all)	= <u>6</u> = 160.
TI(a aan) = c(a l)	G(clear) = 133.4	–LWQ CTS(atm)	= 1 = 186.8 = 1 = 186.8
$\Pi(\text{clear}) = g(\text{all})$	G(all) = 160.1	CTS(all) OLR(all)	= $=$ $=$ 213.4 = $=$ 240.7
(all) = <u>13</u>	G(clear) = <u>5</u> = <u>3</u> = <u>2</u>	OLR(clear) DLR(clear)	= 10 $=$ 266.3 $=$ 12 $=$ 320 $=$
clear and cloudy re and clouds	G(all) = 6	DLR(all)	$= \frac{13}{13} = 346.3$
CRE + DLR	$g \equiv G / ULW$ f = OLP / ULW	LAA(all) ULW	= 14 = 373. = 15 = 400.3
2I WCRF	$g_0(\text{clear}) = 1/3$	CLOUDY = 4	4.47 Wm ⁻²
2DWCKE		STI(cloudy) LWCRE / β _{eff}	= <u>0</u> = <u>1</u> = 44.47
46.8	$g_0(an) = 2/5$	(SH+LH)(cloudy) G(clear)	= <u>2</u> = 88.94 = <u>3</u> = 133.4
(all) = <u>13</u>	$f_0(\text{clear}) = 2/3$	G(cloudy)	$=$ $\frac{4}{4}$ = 177.9
e LW down	$f_0(all) = 3/5$	CTS(all, cloudy)	$= \frac{1}{5} = 222.3$
RE + EEI	$f_0(\text{all}) = \beta_{\text{eff}}$	OLR(cloudy) OLR(clear)	$= \frac{5}{2} = 222.3$ $= \frac{6}{2} = 266.8$
lear) = 4; LAA(cl)	lear) = <u>5;</u> ULW = <u>6</u>	LAA(cloudy) ULW	= <u>9</u> = 400.2 = <u>9</u> = 400.2
$f(clear) = \frac{5}{2}; (1 - \beta) \times ULW = G(all) = \frac{6}{2}$		CLEAR-SKY=	= 66.7 Wm
		STI(clear) (SH + LH)(clear)	= <u>1</u> = 66.7 = <u>2</u> = 133.4
$C(cloudy) = \frac{5}{2}; OLR(clear) = \frac{6}{2}; ULW = \frac{9}{2}$ $PLR(all) = \frac{9}{2}; \beta \times ULW = OLR(all) = \frac{9}{2}$		G(clear) CTS(clear)	= <u>2</u> = 133.4 - <u>3</u> - 200 1
LWCRE / $5 = -\frac{1}{5} = -5.34 \text{ Wm}^{-2}$		OLR(clear)	$= \underline{4} = 266.8$
$x = 345.0 \pm 5$ (ear) = 66 + 2	$\beta_{\rm eff} = 0.58 \pm 0.02$	LAA(clear) ULW	= 5 = 333.5 = 6 = 400.2
ES EBAF Ed4.0	CERES SYN1deg Ed4	ΔF <	±1σ
	Hamananan (2000)		

CEF

Costa

Wild et al. (2015)

$\overline{\mathbf{F}}_0 = \mathbf{N} \times \mathbf{UNIT}$