

Estimation of Cloud Droplet Number Concentration of Shallow Trade-Wind Cumulus using Synergistic Airborne Remote Sensing

Kevin Wolf^[1], André Ehrlich^[1], Susanne Crewell^[2], Marek Jacob^[2], Martin Wirth^[3] and Manfred Wendisch^[1]

[1] Institute for Meteorology, University of Leipzig, Leipzig, Germany
 [2] Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
 [3] Institute for Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany

AMS, Vancouver, 12th July 2018

Trade-wind cumulus in Global Climate Models

Trade-wind cumulus in Global Climate Models

Trade-wind cumulus in Global Climate Models

The 'too few, too bright' tropical low-cloud problem.... (Nam, C. et al., Geophys, Res. Lett. 2012)

Poorly represented due to:

- Sub-grid size
- Structural variability
- Boundary layer interactions

AMS, Vancouver, 12th July 2018, kevin.wolf@uni-leipzig.de

CDNC retrievals

- Wood, R. et al., 2006
- Zheng, R. et al., 2008

CDNC retrievals

- Wood, R. et al., 2006
- Zheng, R. et al., 2008

CDNC retrievals

Combined airborne passive and active remote sensing

Campaign

• Platform:

Area:

High Altitude and Long Range Research Aircraft (HALO)

- *Time*: 08. August 31. August 2016
- Objectives:
 - Trade-wind cumulus in the ITC region
 - Radiative effects
 - Structure
 - Evolution

Flight tracks of HALO during NARVAL-II

Instrumentation of HALO

Combination of active and passive remote sensing instruments

WALES

- Differential Absorption and High Spectral Resolution Lidar
- Cloud top height

Instrumentation of HALO

Combination of active and passive remote sensing instruments

WALES

- Differential Absorption and High Spectral Resolution Lidar
- Cloud top height

HAMP

- Microwave radiometer
 - Cloud radar
- Liquid water path
- Radar reflectivity
- Temperature + humidity profiles

Instrumentation of HALO

Combination of active and passive remote sensing instruments

Cloud top height

Liquid water path

- Radar reflectivity
- Temperature + humidity profiles

Irradiances

- Optical thickness
- Effective radius
- Cloud top reflectivity

Synergistic retrieval approach

SMART (Method A) Cloud top reflectivity Effective Radius

$$N_{\rm d} = \mathcal{A} \cdot \sqrt{f_{\rm ad} \cdot \gamma_{\rm ad}} \cdot \frac{\sqrt{\tau}}{\sqrt{r_{\rm eff}^5}}$$

Synergistic retrieval approach

Synergistic retrieval approach

	Cloud I	Cloud II	Cloud III	Cloud IV	Cloud V	Cloud VI
	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic
$N_{ m Cloud} [m cm^{-3}]$	50	50	100	100	200	200
$LWP_{Cloud} [gm^{-2}]$	362.5	217.5	362.5	217.5	362.5	217.5

	Cloud I	Cloud II	Cloud III	Cloud IV	Cloud V	Cloud VI
	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic
$N_{ m Cloud} [{ m cm}^{-3}]$	50	50	100	100	200	200
$LWP_{Cloud} [gm^{-2}]$	362.5	217.5	362.5	217.5	362.5	217.5
$N_{ m A,lib}~[m cm^{-3}]$	53	69	106	137	215	274

	Cloud I	Cloud II	Cloud III	Cloud IV	Cloud V	Cloud VI
	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic
$N_{ m Cloud} [m cm^{-3}]$	50	50	100	100	200	200
$LWP_{Cloud} [gm^{-2}]$	362.5	217.5	362.5	217.5	362.5	217.5
$N_{ m A,lib} \ [m cm^{-3}]$	53	69	106	137	215	274
$N_{ m B,lib}~[m cm^{-3}]$	52	68	105	134	211	268

	Cloud I	Cloud II	Cloud III	Cloud IV	Cloud V	Cloud VI
	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic
$N_{ m Cloud} [m cm^{-3}]$	50	50	100	100	200	200
$LWP_{Cloud} [gm^{-2}]$	362.5	217.5	362.5	217.5	362.5	217.5
$N_{ m A,lib} \ [m cm^{-3}]$	53	69	106	137	215	274
$N_{\rm B,lib}~[{\rm cm}^{-3}]$	52	68	105	134	211	268

uncorrected adiabaticity

AMS, Vancouver, 12th July 2018, kevin.wolf@uni-leipzig.de

	Cloud I	Cloud II	Cloud III	Cloud IV	Cloud V	Cloud VI
	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic	adiabatic	sub-adiabatic
$N_{ m Cloud} [m cm^{-3}]$	50	50	100	100	200	200
$LWP_{Cloud} [gm^{-2}]$	362.5	217.5	362.5	217.5	362.5	217.5
$N_{ m A,lib} [m cm^{-3}]$	53	69	106	137	215	274
$N_{ m B,lib}~[m cm^{-3}]$	52	68	105	134	211	268
$N_{ m C,lib}~[m cm^{-3}]$	52	53	105	104	211	208

corrected adiabaticity

AMS, Vancouver, 12th July 2018, kevin.wolf@uni-leipzig.de

Measurement Example

Meteosat satellite image of 19:30 UTC

Date: 19.08.2016 Time: 12:29 – 20:52 UTC Duration: 8h 23 min Weather situation:

- moderate convection
- larger fields of shallow trade-wind cumulus
- zonaly winds

Correlation Reflectivity - CDNC

uncorrected adiabaticity

Correlation Reflectivity - CDNC

corrected adiabaticity

Correlation Reflectivity - CDNC

How to separate the radiative effect from varying environmental conditions?

- Reflectance measurements
- Independent Cloud Droplet Number Concentration
- Separated for Liquid water path and droplet size
- Correct adiabatic assumption (calc. adiabaticity)
- Precipitation flag