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At the site, we are installing all instruments
in the same radar pixel; the area of the
study is indicated in the figure below as
a black square within the overlay.
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INTRODUCTION/ATMOSPHERIC CONTEXT

THE RADIAL DISTRIBUTION FUNCTION

CHALLENGES IN COMPUTING THE RDF IN 3-D

DESCRIPTION OF ALGORITHM

TESTING THE ALGORITHM

Quantifying cloud particle clustering is important to help develop and verify theories 
associated with condensational growth, collision-coalescence, radiative transfer, 
and aircraft icing. One of the more common statistical tools used to characterize this 
clustering is the radial distribution function (hereafter rdf or g(r)).

Most previous studies that have attempted to estimate the in situ radial distribution 
function among cloud droplets utilize data obtained from a long but thin sample 
volume, resulting in cloud droplet positions recorded only along a single spatial 
dimension. Although it is theoretically possible to take such one-dimensional data 
and estimate three-dimensional radial distribution functions, recent studies have 
shown that (i) such approaches rely on questionable assumptions related to 
statistical homogeneity and isotropy on large (>100m) spatial scales and (ii) 
sampling uncertainties related to such one-dimensional data can yield considerable 
uncertainties in the inferred three-dimensional rdf.

Fortunately, digital holographic instruments have been recently developed that allow 
for full three-dimensional measurement of cloud droplet positions. Utilizing data from 
these instruments should allow for a more robust estimate of in situ cloud particle 
clustering. However, estimating the rdf within a finite three-dimensional sample 
volume brings about new challenges.

The radial distribution function [g(r)] is a statistical tool that supplies a scale-localized 
deviation from perfect spatial randomness.  Conceptually, we can write:

g(r ) = 0

[Observed number of particle pair centers separated by ( -dr<r< +dr)]
[Expected # of particle pair centers separated by (r -dr<r<r +dr) if perfectly random]0 0

When g(r )=1, this implies that on scale r there are no departures from perfect spatial 0 0 

randomness. When g(r ) exceeds unity, it shows that particle pairs are more likely than 0

expected to be separated by spatial scale r .0

To compute g(r) for a measured data set, we can write:

where N is the number of particles in the measurement volume, V is the size of the 
measurement volume, dV  is the volume of the generalized n-dimensional shell r

between radii r-dr and r+dr, and y(r) is the number of particles having their centers a i

distance between r-dr and r+dr from the center of the ith particle.

r r0 0

The biggest challenge in computing the radial 
distribution functions for finite volumes in 2+ 
dimensions relates to how to handle the 
edges of the sample volume. Numerical 
studies often utilize periodic boundary 
conditions to compute g(r), but this is not 
physically meaningful for measurement 
volumes. An alternative approach used is to 
exclude a boundary region (see grey areas in

figures to left), but this excludes 
large fractions of the observational 
da ta ,  espec ia l l y  i n  th ree -
dimensional data-sets and/or when 
the measurement volume has a 
large aspect ratio.

In fact, the “excluded-volume” method prevents any estimate of g(r) for scales larger than 
L/2, where L is the length of the shortest dimension of the sample volume. Given the 
aspect ratios associated with real instrumentation (see example below from HOLODEC – 
the holographic detector for clouds), this would severely limit our ability to characterize 
cloud particle clustering and prevent estimating g(r) on scales greater than 3 mm.
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Here, we introduce a new “effective-volume” 
algorithm. We modify g(r) to read:

where we have modified the dV  term to be the r

volume in the generallized n-dimensional shell 
between radii r-dr and r+dr still residing within the 
measurement volume. This is computed using the 
volume of the full n-dimensional shell and then 
multiplying by a look-up-table estimate based on r, dr, 
and the position within the sample volume.

dV =[12/(12+16)] dVr(i,j) r

The “effective-volume” algorithm was tested 
against the theoretically known rdf for two 
different systems within a unit cube – a Poisson 
pdf (where g(r) should be unity for all scales) and 
a Matérn cluster process (where g(r) has a 
known analytical form). The effective-volume 
method performed as well or better than the 
previously utilized excluded volume method in 
these tests.

Cubical Geometry

The “effective-volume” algorithm was tested 
against the same two theoretically known rdf 
curves in a sample volume designed to mimic the 
HOLODEC sample volume. There is still 
excellent agreement. The excluded volume 
method cannot be used for this sample volume 
because of the HOLODEC measurement 
volume aspect ratio.

Practical utility is demonstrated by computing 
the rdf for real HOLODEC data taken inside a 
cloud chamber. Although sampling noise is 
substantial (and a subject of continuing study), 
retrieval of 3-D rdf curves appears possible.
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