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Research Scanning Polarimeter (RSP) in ORACLES

ER-2 - 2016

High Altitude
Remote Sensing Platform

P-3 - 2017

RSP: multi angle, passive polarimeter 

152 view angles   x
9 (7 clouds) spectral channels   x 
3 polarization states =
~ 4000 observations per pixel
(but highly correlated)

Liquid clouds products
Droplet size 
distribution at top of 
cloud 
Droplet number 
concentration
Liquid water path
Cloud optical thickness



Goals

• To develop a new and combined retrieval from 
multi-angle polarimetric measurements for low-
level clouds and above cloud aerosols (ACA)

• Our current work focuses on the low-level cloud 
scheme (better validation opportunities, allows 
to develop insights on the algorithm bahaviour)



Retrieval approach – Neural Networks (NN)

Why Neural Network? 
(Advantages/disadvantages)

❑ Can represent any type of function, especially non-linear ones, given enough parameters (layers and 
nodes), where the training process creates a “transfer function” between inputs and outputs.

❑ Hard to assess and interpret the network’s function in absolute physical meanining.
❑ For continuous output networks, can interpolate and extrapolate beyond the training set LUT, unlike 

best fit methods.
❑ If convergence fails or results don’t do well, hard to assess and needs a lot of trial/error tweaking.
❑ Gaining large popularity among the remote sensing community (e.g., Del Frate et al., 2005; Cardena et 

al., 2007;   Milstein and Blackwell, 2015; Di Noia et al., 2015), as it can sometime supersede purely 
physical based model retrievals (especially in remote sensing imagery interpretation).

What is a Neural Network?



Retrieval approach – NN scheme (stage I)

Dimensionality
Reduction (PPC)

& Scaling

Simulated 
RSP data

for various 𝑟𝑒, 𝑣𝑒, 𝜏, etc.

(1) Creating training set (simulated data) (2) Preparing the inputs (dimensionality reduction)

(3) Training (optimizing network weights and architecture) – train/validation/test sets 

(4) Application of the network on real data (prediction)



We validated our NN with field observations from ORACLES 2016 ER-2 observations 
that use the standard RSP algorithms: 

Parametric (PP), Nakajima-King (NK), and Rainbow Fourier Transform (RFT)

Validation of NN scheme (Stage I)

y = 1.75 + 0.80x, r2=0.96

y = 9.20 + 0.56x, r2=0.45

❖ Good correlation and almost no bias with COD
❖ Lower correlation and positive bias with reff (NN behaves more like NK method 

and gives more weight to the total reflectance input) 
❖ The reason why more weight is given to the total reflectance stems from the  

dimensionality reduction procedure (not taking into account the true
uncertainty of each of the inputs)

Segal-Rozenhaimer et al. (2018), submitted to JQSRT



Retrieval approach – NN scheme (stage II)
❖ Goal: Improved uncertainty representation of each input (I – 3% vs. DoLP or Q – 0.2%)
❖ Method: data is now standardized by subtracting the mean measurement value divided by 

the expected measurement uncertainty for that mean over a given range of geometries:

❖ Modifications needed for the new NN scheme: 
✓ 1024 nodes in each layer (4) Instead of 40 nodes in 2 layers
✓ Better optimization and gradient descent schemes (TensorFlow/Keras)
✓ ReLU activation function (faster computation)
✓ Mini-batch training (instead of online, i.e. updating weights after each training point)

ෝ𝑥𝑖 𝜗𝑠, 𝜗𝑣, 𝜑, 𝜆 =
𝑥𝑖 𝜗𝑠, 𝜗𝑣, 𝜑, 𝜆 − ҧ𝑥 𝜗𝑠, 𝜗𝑣, 𝜑, 𝜆

𝜎 ҧ𝑥 𝜗𝑠, 𝜗𝑣, 𝜑, 𝜆 (Knobelspiesse et al, 2018, in prep.)



Original
Output

Linearly 
Corrected

A linear rescaling is applied 
to raw output to correct a 
side-effect of our approach 
to standardization 
(weighting by uncertainty).

This correction is obtained 
from a linear fit of a partial 
subset of observations.  
Afterwards, it is applied to 
the full dataset (2016 ER2).
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Validation of NN scheme (Stage II)



Nakajima-King vs. ParametricNeural Network vs. Parametric
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Evaluation
How do we do relative to other retrieval comparisons?

• Retrieval comparison is a tricky business

• Different state space sensitivities...
• Different uncertainties...

• Relative to other retrieval comparisons (NJK vs. PP) we have similar performance.

% Counts % Counts



Comparing NN schemes (Stage I vs. Stage II)

Time Series results from Stage I NN scheme

Stage I NN



Results from ORACLES 2016-2017

2016

2017

reffCODBut Larger spread

reff more variableCOD variable



Results from ORACLES 2016-2017

2016 2017

20170830

20170831

20160920

20160924

Closed cell/homogeneous

Open cell/heterogeneous



Summary & Conclusions
• A Neural Network was trained, tested and validated for retrievals of liquid 

cloud property from RSP measurements.

• Application of the correct uncertainty model for the various inputs had an
effect of goodness of the retrieval scheme (latter scheme is better).

• Comparison with standard RSP cloud products using ORACLEs data show good
agreement between the two methods.

• ORACLES 2016 show increase of reff further from the Namibian coast, while 
COD show increase as well, but is more variable overall.

• There seem to be a correlation between reff and COD for both 2016 and 2017,
but the correlation strength and slope depends on cloud macrostructure 
(higher variability in reff is seen in open cell forms)

Future work
• Developing Above Cloud Aerosols NN scheme: simulations will probably use 

the cloud only training set as a ‘surface’ under the aerosols, and a new 
approach of 2D inputs (wavelength x VZA) will be tested.



Thanks!
Data products can be found here:
Stage I NN:
http://data.giss.nasa.gov/pub/rsp/ORACLES_2016/NeuralNetworkCloud/
Stage II NN:
http://data.giss.nasa.gov/pub/rsp/ORACLES_2016/

http://data.giss.nasa.gov/pub/rsp/ORACLES_2016/NeuralNetworkCloud/
http://data.giss.nasa.gov/pub/rsp/ORACLES_2016/


Backup slides



Implementation
Step IV – optimize network inputs & weights
to get the best target predictions on the training and test sets – tested with 
reserved simulations not in training set

Input Label # input variables Reff RMSE Veff RMSE COD RMSE

Ri 30 1.01 0.016 2.21

Qi 30 0.93 0.008 9.04

Rp 20 0.74 0.006 10.85

DoLP 100 0.54 0.006 1.71

Ri-Qi 60 0.78 0.010 0.45

Ri-Rp 50 0.60 0.009 0.97

Ri-DoLP 130 0.37 0.006 1.16

Qi-Rp 50 0.80 0.005 6.88

Qi-DoLP 130 0.35 0.004 0.81

Rp-DoLP 120 0.45 0.004 1.18
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Here we test the value of different 
ways of slicing & dicing the data.

This helps us explore best way to 
manage measurement uncertainty

Poor skill at ve



Step VI – Retrievals & Validation: Cloud Optical Thickness

Validate with field observations that use standard RSP algorithms
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2016-09-27

Step VI – Retrievals & Validation: Cloud Droplet effective radius

Validate with field observations that use standard RSP algorithms
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A small change… A big difference

• Results for tanh d
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Take away:
With a relatively simple forward 
model training set, the Neural 
Network approach appears to 
perform fairly well.

The network can be trained with 
a denser training grid and 
possibly be improved.

Evaluation
Step VI – Retrievals & Validation
Validate with field observations that use standard RSP algorithms: 
Parametric (PP), Nakajima-King (NJK), and Rainbow Fourier Transform (RFT)
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Other Histograms and Time Series
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Time Series (UTC)
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Remaining Issues
Are there any explanations for remaining biases and variability?

• Lower clouds tend to have low biased 𝑟𝑒 retrievals

• Difficult to tease out physical relationship, but indicates that the neural 
network should be trained using a variable cloud top height training set.

• Above cloud aerosol optical thickness (ACAOT) might be anti-correlated to the 
𝜏𝑡𝑜𝑡 bias, but trend is not obvious despite significant ACAOT.
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Sensitivity to Cloud top height 

• Bias 2d histograms: confounding issues
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Sept. 12 ER-2 Return To Base leg
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Step IV – retrievals & validation: Cloud Droplet effective radius

Validate with field observations that use standard RSP algorithms

Probably non-marine 
stratocumulus clouds… 
outside our training set



Natural Variability of re with CTH

9 10 11 12 13 14 15

Time Series (UTC)

0

20

r e
 [

m
]

0

1000

2000

C
lo

u
d

 T
o

p
 H

e
ig

h
t

I & DOLP noise tanh

NN r
e
 corr

NJK r
e

PP r
e

HSRL CTH

2016-09-10

13.2 13.4 13.6 13.8 14 14.2 14.4

Time Series (UTC)

-100

-50

0

50

100

%
 b

ia
s
 r

e

500

1000

1500

H
S

R
L

 C
T

H

I & DOLP noise tanh

bias NN r
e
 corr

HSRL CTH

2016-09-22



Implementation
Step II:
- dimensionality reduction to create input layer nodes

Total 
Reflectance

Polarized 
Reflectance

Degree of Linear 
polarization

Polarized 
Reflectance     
(positive)

y = noise free simulated data
y’= noisy simulated data
P = Projection obtained from PCA on y
Pn is number of PC to be retained
y’r = reconstructed vector of noisy simulated data = PT

nPny’
Reconstructed error = ||y’r-y||

# of PC’s are chosen to minimize the reconstruction error
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Descriptive termsPolarization basics

RI =
Ipro

2

Fo cos qs( )

Similar for Q, U & V radiances [w/m2 sr]
ro – solar distance [AU]
Fo – Exo-atmospheric irradiance [w/m2]

DoLP =
Q2 +U 2

I
=
RP

RI

2

QP RR =

Reflectance RI, RQ, RU

Polarized reflectance RP

Degree of Linear Polarization DoLP

Linearly polarized component of 
reflectance
Always positive, polarization 
directionality lost

Polarized reflectance fraction, 
always positive
Often less sensitive to calibration, 
but…

…expresses both total and 
polarized interactions


