Application of the Super-Droplet Method to Mixed-Phase Clouds

Based on the Porous Spheroid Approximation of Ice Particles
S. Shima ${ }^{1,2}$, Y. Sato ${ }^{3,2}$, A. Hashimoto ${ }^{4}$, and R. Misumi ${ }^{5}$
${ }^{1}$ University of Hyogo, Kobe, Japan, ${ }^{2}$ RIKEN Center for Computational Science, Kobe, Japan, ${ }^{3}$ Nagoya University, Nagoya, Japan, ${ }^{4}$ Meteorological Research Institute, Tsukuba, Japan, ${ }^{5}$ National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan

The super-droplet method (SDM) is a particle-based and probabilistic numerical scheme, which enables accurate simulations of cloud microphysics with less demand on computation (Shima et al. 2009). In this study, the SDM is applied to mixed-phase cloud microphysics. Following Chen and Lamb (1994), ice particles are represented by porous spheroids. The model is evaluated through a 2 D LES simulation of an isolated cumulonimbus. It is confirmed that the result is in reasonable agreement with the known mass-dimension relationships of ice particles. (to be submitted to GMDD)

Application of SDM to Mixed-Phase Cloud Microphsics

Attribute variables of a particle
Equatorial radius of ice
Polar radius of ice
Apparent density of ice Rime mass
Number of monomers (primary ice crystals)
Freezing temperature of particle Equivalent radius of droplet
Mass of soluble materials

Cloud microphysical processes
Ice formation (condensation/immersion/ homogeneous freezing) Melting
Deposition/sublimation Condensation/evaporation (incl. CCN act.) Sedimentation of ice/droplets Droplet-ice coalescence (riming) Ice-ice coalescence (aggregation) Droplet-droplet coalescence (Breakup is ignored)

Results of 2D LES simulation of an isolated cumulonimbus

Density-Dimension

Conclusion

SDM was applied to mixed-phase cloud microphysics
2D LES simulation of a cumulonimbus was carried out for model evaluation
The model reproduced mass-dimension relationships reasonably well More detailed validation and sophistication of the model is needed:

Reliable aggregation efficiency and outcome; Breakup (spontaneous, collisional, rime splintering); Partial melting and shedding

Shape

Numerical Setup	
Sounding Khain et al., Part I, JAS (2004)	
Aerosol	Pure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}: 105 / \mathrm{cc}$ Mineral dust internally mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$: $d=1 \mu \mathrm{~m}, 10 / \mathrm{cc}$
Grid size	$\Delta x=\Delta y=\Delta z=125 \mathrm{~m}$

LES solve SCALE (256D/grid)

SCOLE
LES solver SCALE (Nishizawa et al. 2015; Sato et al. 2015)

 Shape and structure of ice particles ($T=5400 \mathrm{~s}$)

Acknowledgement: This research partly used the computational resources of the K computer and FX10 provided by the RIKEN Center for Computational Science (R-CCS) and Kyushu University through the HPCI System Research Project (Project ID: hp140094, 150153, hp160132). This work was supported by JSPS KAKENHI Grant Number 26286089; MEXT KAKENHI Grant Number 18H04448; the joint research program of the Institute for Space-Earth Environmental Research, Nagoya University; the Center for Cooperative Work on Computational Science, University of Hyogo; and the Department of HPC Support, Research Organization for Information Science \& Technology (RIST) under the Optimization Support Program of the HPCI system.

Supplement: Polluted Case (105/cc \rightarrow 10500/cc)

Numerical Setup	
Sounding Khain et al., Part I, JAS (2004)	
Aerosol	Pure $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}: 105 / \mathrm{cc} \rightarrow \mathbf{1 0 5 0 0 / c c}$ Mineral dust internally mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}:$ $d=1 \mu \mathrm{~m}, 10 / \mathrm{cc}$
Grid size	$\Delta x=\Delta y=\Delta z=125 \mathrm{~m}$
Cloud microphyiscs	SDM $(256 \mathrm{SD} / \mathrm{grid})$
LES solver	SCALE (Nishizawa et al. 2015; Sato et al. 2015)

Results of 2D LES simulation of an isolated cumulonimbus

0.01

Shape and structure of ice particles ($T=2400$ s)

