

Application of the Super-Droplet Method to Mixed-Phase Clouds Based on the Porous Spheroid Approximation of Ice Particles S. Shima^{1,2}, Y. Sato^{3,2}, A. Hashimoto⁴, and R. Misumi⁵

¹University of Hyogo, Kobe, Japan, ²RIKEN Center for Computational Science, Kobe, Japan, ³Nagoya University, Nagoya, Japan, ⁴Meteorological Research Institute, Tsukuba, Japan, ⁵National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan

The super-droplet method (SDM) is a particle-based and probabilistic numerical scheme, which enables accurate simulations of cloud microphysics with less demand on computation (Shima et al. 2009). In this study, the SDM is applied to mixed-phase cloud microphysics. Following Chen and Lamb (1994), ice particles are represented by porous spheroids. The model is evaluated through a 2D LES simulation of an isolated cumulonimbus. It is confirmed that the result is in reasonable agreement with the known mass-dimension relationships of ice particles. (to be submitted to GMDD)

Application of SDM to Mixed-P	lication of SDM to Mixed-Phase Cloud Microphsics		Numerical Setup	
Attribute variables of a particle	Cloud microphysical processes	Sounding	Khain	
Equatorial radius of ice	Ice formation (condensation/immersion/		Pure (
Polar radius of ice	homogeneous freezing)	Aerosol	Miner	
Apparent density of ice	Melting		<i>d</i> =1	
Dimo model) Deposition/sublimation	Grid size	$\Delta x = \Delta y$	

Conclusion

SDM was applied to mixed-phase cloud microphysics
2D LES simulation of a cumulonimbus was carried out for model evaluation
The model reproduced mass-dimension relationships reasonably well
More detailed validation and sophistication of the model is needed:
Reliable aggregation efficiency and outcome; Breakup (spontaneous, collisional, rime splintering); Partial melting and shedding

<u>Acknowledgement:</u> This research partly used the computational resources of the K computer and FX10 provided by the RIKEN Center for Computational Science (R-CCS) and Kyushu University through the HPCI System Research Project (Project ID: hp140094, 150153, hp160132). This work was supported by JSPS KAKENHI Grant Number 26286089; MEXT KAKENHI Grant Number 18H04448; the joint research program of the Institute for Space-Earth Environmental Research, Nagoya University; the Center for Cooperative Work on Computational Science, University of Hyogo; and the Department of HPC Support, Research Organization for Information Science & Technology (RIST) under the Optimization Support Program of the HPCI system.

Khain et al., Part I, JAS (2004)

Mineral dust internally mixed with $(NH_4)_2SO_4$:

Pure $(NH_{4})_{2}SO_{4}$: 105/cc

 $d=1\mu m, 10/cc$

Supplement: Polluted Case (105/cc \rightarrow 10500/cc)

Numerical Setup		
Sounding	Khain et al., Part I, JAS (2004)	
Aerosol	Pure $(NH_4)_2SO_4$: 105/cc \rightarrow 10500/cc Mineral dust internally mixed with $(NH_4)_2SO_4$: $d=1\mu m$, 10/cc	
Grid size	$\Lambda r = \Lambda v = \Lambda z = 125m$	

