

Hotplate-derived Wind Speed and Snowfall Rate Jefferson Snider ¹ and Roy Rasmussen ²

University of Wyoming Department of Atmospheric Science ¹; National Center for Atmospheric Science ²

Objectives: Addressing two issues relevant to the ~ 70 hotplate precipitation sensors sold by Yankee Environmental Systems (YES): 1) Two publications (Boudala et al. 2014; Zelasko et al. 2018) report bias in the YES-derived wind speed (U_{pro}), and thus error in determination of snow particle catch efficiency and in precipitation amount. Here, a calibrated hotplate wind speed (U_{cal}) is formulated via an energy budget analysis. 2) A new snow particle catch efficiency function is developed and tested. The new function is expressed in terms of the calibrated wind speed (U_{cal}).

- a) Vane anemometer vs YES wind speed (U_{pro}) during OWLeS (North Redfield Site; Zelasko et al. 2018).
- b) Vane anemometer vs
 calibrated wind speed
 (U_{cal}) during OWLeS
 (North Redfield Site;
 Zelasko et al. 2018).

Test of $E_{NEW}(U_{cal})$ on OWLeS snowfall events from Zelasko et al. (2018)

NOAH-II comparator is a wind-speed corrected weighing gauge

Reasonable agreement confirms method

Up and Down Surfaces (precip and wind speed)

LW and SW Sensors
Temperature

Electronics

$$U_{cal} = \frac{\mu}{D_h \rho} \cdot \left(\frac{Q_{dn} - A_h \varepsilon_h \sigma T_h^4}{\alpha D_h K \cdot (T_h - T)} - \frac{\gamma}{\alpha} \right)^{1/\beta}$$

Measurements: Q_{dn} and TConstants: μ , D_h , A_h , ε_h , σ , K

Derived Calibration Coefficients: α , β , γ , and T_h

Rasmussen et al. 2011 (R11)

Personal communication, YES 2012 (Y12)

Adapted from R11 and Kochendorfer et al. 2017

a) Sonic anemometer vs YES wind speed (U_{pro}) during WYCEHG (Noname Watershed site; Zelasko, 2017).

b) Sonic anemometer vs calibrated wind speed (U_{cal}) during WYCEHG (Noname Watershed site; Zelasko 2017).

Test of $E_{NEW}(U_{cal})$ on WYCEHG snowfall events from Zelasko (2017)

SNOTEL comparator is a weighing snow pillow

Discrepancy thought due to enhanced snow drift accumulation at easterly-exposed WYCEHG site