Analyzing the radiative feedbacks using kernel and neural network methods

Yi Huang, Tingting Zhu Dept. of Atmospheric & Oceanic Sciences McGill University

AMS Rad Conf 2018 Vancouver, BC 2018-07-09

Introduction

- Radiation balance: $N = F + \lambda \cdot \Delta T$
- Climate sensitivity λ⁻¹ is a key factor that predicts the magnitude of global warming ΔT driven by radiative forcing F; its sign and magnitude are controlled by radiative feedbacks: λ = λ_T + λ_{WV} + λ_C + λ_A
- Method for quantifying feedback parameters λ_X $\lambda_X = \Delta R_X / \Delta T$ [W m⁻² K⁻¹]
 - Partial Radiative Perturbation [Manabe & Weatherald 1988; Colman 2003]

 $\Delta R_X = R(X + \Delta X) - R(X), R$ computed by RTM

- Kernel method [Shell et al 2008; Soden et al 2008] Non-cloud: $\Delta R_X = K_X \cdot \Delta X$, $K_X = \frac{\partial R}{\partial X}$ Cloud: $\Delta R_C = \Delta R - \sum \Delta R_X$

- Histogram method for cloud feedback [Zelinka et al 2012]: $\Delta R_C = f(H_C, \tau_C)$

A new set of kernels

[Huang, Tan and Xia, 2017]

- *R*(*X*): RRTM; TOA and <u>surface</u>
- X: ERAi
- Global 2.5°x2.5°, 5 years' 6hourly atmos profiles used to compute K_X, and then averaged at each grid point for every calendar month.

Validation for the kernels: Radiation closure test

• Radiation closure test: comparison between GCM-simulated clear-sky radiation anomaly and that reproduced by the kernels:

$$\Delta R_{total} \stackrel{\bullet}{\uparrow} \sum K_X \Delta X$$

- Test 1: global warming
- Test 2: unforced internal variability

2.0

1.0

0.0

-1.0

Global mean TOA and surface radiation anomaly in a CESM 100-yr control experiment.

Radiation anomaly in a CESM 2xCO2 experiment **GCM-simulated Kernel-diagnosed** (a) TOA dR (CESM-simulated) $R_{>} = 1.6 \text{ W m}^{-2}$ (b) TOA dR (diagnosed) $< dR > = 1.4 W m^{-2}$ 0 60E 120E 180 120W 60W 00 60E 120E 180 (d) SFC dR (CESM-simulated $B_{P>} = 4.1 \text{ W m}^{-2}$ (e) SFC dR (diagnosed) < dR > = 4.4 W m00 60E 120E 180 120W 60W -.5 .5 -12 Units: W m⁻² (a) TOA dR (b) SFC dR **CESM-Simulated** 1.0 Diagnosed 0.0 -1.0 100 80 20 40 60 80 20 60 100

Limitations of the kernel method

- Previous methods: Pros & Cons
 - PRP method

 $\Delta R_X = R^{RTM}(X + \Delta X) - R^{RTM}(X)$

Evaluated as defined;

Computationally expensive.

- Kernel method (approximation) $\Delta R_X = K_X \cdot \Delta X$ Computationally inexpensive; Linearity assumption; ΔR_C as residual.

• Solution?

Predict R-X relationship with a computationally efficient, non-linear model - Neural Network (NN). $\Delta R_X = R^{NN}(X + \Delta X) - R^{NN}(X)$ Soden et al (2008): "Cloud feedbacks cannot be evaluated directly from a cloud radiative kernel because of strong nonlinearities." Shell et al (2008): "The remaining error is due to the fact that the surface albedo feedback is somewhat nonlinear, ..., and the radiative kernel calculation depends on the size of the standard anomaly used. ..."

Neural Network Method

Outputs	Inputs	Padiation
SSPC/DSPC	Ct meoning Shortwave	Naulation
SSF /TSR	TCWV, SP, TCO3, FAL, TCIW, TCLW,	HCC, MCC, LCC, Loc
STRU	SK1, 110, 1200, 1500, 10WV, LOC	
TOA Out	tgoing Longwave Radiati	OP LCC, Loc
ГTR	SKT, T10, T200, T500, Q200, Q500, Q70	00, HCC, MCC, LCC, Loc
Abbreviation	Description	
SSRC	Surface net solar radiation in clear sky, V	V/m^2
SSR	Surface net solar radiation in all sky, W/	m^2
TSRC	Top net solar radiation in clear sky, W/n	1^2
TSR	Top net solar radiation in all sky, W/m^2	
STRC	Surface net thermal radiation in clear sky	$V, W/m^2$
STR	Surface net thermal radiation in all sky,	W/m^2
TTRC	Top net thermal radiation in clear sky, W	I/m^2
TTR	Top net thermal radiation in all sky, W/n	m^2
TCWV	Total column water vapor, kg/m^2	
SP	Surface pressure, Pa	
TCO3	Total column ozone, kg/m ²	
FAL	Forecast albedo, $(0,1)$	FRA interim
TCIW	Total cloud ice water, kg/m^2	
TCLW	Total cloud liquid water, kg/m ²	dataset
HCC	High cloud cover, $(0,1)$	ualaset
MCC	Medium cloud cover, $(0,1)$	
LCC	Low cloud cover, $(0,1)$	
Loc	Location, including longitude, sin(longitu	de) and $\cos(\text{latitude})$
SKT	Skin temperature, K	
T 10	Air temperature at 10 hPa level, K	
T200	Air temperature at 200 hPa level, K	
T500	Air temperature at 500 hPa level, K	
Q200	Specific humidity at 200 hPa level, kg/kg	
$\mathbf{Q500}$	Specific humidity at 500 hPa level, kg/kg	
Q700	Specific humidity at 700 hPa level, kg/kg	5

Validation of $R^{NN}(X)$

• Validation Truth (ERAi) Truth: ERAi data Prediction: NN

- Error Statistics
 - LW

MB=0.16,

RMSE=1.44 - SW

Bias

(NN-

Truth)

MB=0.04,

RMSE=3.10 Units: W m⁻²

* Based on monthly **RMSE** values at all locations

Feedbacks: Kernel vs. NN

- Context: Interannual variation
- ΔR_X and ΔT time series: deseasoned and detrended; 2007-2016 (not used in training)
- NN very well reproduces the global mean overall feedback ΔR_{total} from the ERAi data and feedbacks ΔR_X analyzed from the kernel method.

	Dediction	В			RMSE			
	Radiation	$\sum \bigtriangleup R_X^K$	$\sum \triangle R_X^{NN}$	ΔR^{NN}	$\sum \triangle R_X^K$	$\sum \triangle R_X^{NN}$	$\triangle R^{NN}$	
	SSR	0.00	0.42	0.32	0.06	0.55	0.47	
	STR	0.00	-0.24	-0.23	0.15	0.29	0.27	
	TSR	0.00	0.39	0.27	0.05	0.49	0.41	
1	TTR	0.00	-0.22	-0.03	0.12	0.31	0.17	
	Predicted with all the variables varying altogether					es	7	

Feedbacks: Kernel vs. NN

• Feedback parameter: $\lambda = regress(\Delta R_X, \Delta T)$

	Clear-sky				All-sky			
Surface		TOA		Surface				
-	SSRC+STRC		TSRC+TTRC		SSR+STR		ISR+IIR	
λ	$1.47 {\pm} 0.50$		-0.98 ± 0.44		$1.00 {\pm} 0.54$		-1.55 ± 0.84	
	Kernel	NN	Kernel	NN	Kernel	NN	Kernel	NN
λ_T	-1.55 ± 0.10	-1.00 ± 0.25	-3.92 ± 0.39	-3.39 ± 0.42	-1.05 ± 0.14	-1.22 ± 0.19	-3.83 ± 0.44	-4.58 ± 0.61
λ_W	2.01 ± 0.30	$1.81 {\pm} 0.36$	2.51 ± 0.44	$2.04 {\pm} 0.35$	1.33 ± 0.23	$1.54 {\pm} 0.29$	2.34 ± 0.41	$2.00{\pm}0.36$
λ_A	$0.72{\pm}0.29$	$0.61 {\pm} 0.26$	$0.68{\pm}0.27$	$0.57 {\pm} 0.24$	0.54 ± 0.21	0.43 ± 0.17	$0.51{\pm}0.19$	$0.40 {\pm} 0.15$
λ_C					-0.14 ± 0.55	$-0.58 {\pm} 0.57$	-0.33 ± 0.56	-0.59 ± 0.56
$\sum \lambda_X$	$1.17{\pm}0.43$	$1.43 {\pm} 0.55$	-0.73 ± 0.48	-0.77 ± 0.42	0.69 ± 0.55	0.17 ± 0.57	-1.30 ± 0.86	-2.78 ± 0.92
λ_e	-0.30	-0.04	0.29	0.21	-0.30	-0.83	0.25	1.20
λ^{NN}		1.39 ± 0.54		-0.74 ± 0.42		0.24 ± 0.57		-2.37 ± 0.91

• Good closure in clear-sky; noticeable non-closure in all-sky. Why? Not strong global mean ΔR_X - ΔT relationship; inaccuracy in NN model; non-linear relationship between feedbacks!

8

Nonlinearity in albedo feedback

• $\Delta R_X = K_X \cdot \Delta X$ Albedo kernel K_A is obtained by (a) TSR anomaly using small perturbation. If used to evaluated ΔR_A at large albedo changes, non-closure! [Shell et al. 2008]

• In comparison, the NN method achieves better closure.

SW radiation anomaly of September 2012. Units: W m⁻²

Cloud Feedback: NN vs. Kernel

Kernel: $\Delta R_C = \Delta R - \sum \Delta R_X$ NN: $\Delta R_C = R^{NN}(C + \Delta C) - R^{NN}(C)$

Feedback: $\lambda_C = regress(\Delta R_C, \Delta T)$

- Similar patterns of cloud feedback from NN and kernel methods ENSO.
- Quantitative difference nonlinear effect between cloud and non-cloud feedbacks!

Cloud Feedback: hi/mi/lo components

- NN method can directly assess the total and component cloud feedback
- E.g., high cloud (Hi):

 ΔR_{C_hi}

- $= R^{\overline{NN}}(hcc + \Delta hcc, tciw + \Delta tciw)$
- $-R^{NN}(hcc,tciw)$
- High-cloud dominates the feedback for interannual radiation variability.

Cloud feedback. Units: W m⁻² / K

Cloud Feedback: hi/mi/lo components

- NN method can directly assess the total and component cloud feedback
- E.g., high cloud (Hi):

 ΔR_{C_hi}

- $= R^{\overline{NN}}(hcc + \Delta hcc, tciw + \Delta tciw)$
- $-R^{NN}(hcc,tciw)$
- Sum of components reproduces total cloud feedback – nonlinear coupling between the hi/mi/lo components very small!

Cloud feedback. Units: W m⁻² / K ¹²

Conclusions

- A new set of kernels now available for TOA and surface radiative feedback analysis
- NN is a viable method for feedback analysis, with advantages:
 - Accounts for nonlinearity, e.g., closure issue in the surface albedo feedback related to large Arctic sea ice melt
 - Directly measures cloud feedback, which has strong nonlinear coupling with non-cloud feedbacks
 - So far, proof-of-the-concept. Can be further improved, e.g., Global model vs. latitudinal/local models; selection of predictive variables
- References
- 1. Huang, Y., Y. Xia and X. Tan, (2017), On the pattern of CO₂ radiative forcing and poleward energy transport, J. Geophys. Res.-Atmos., 122, 10,578–10,593.
- 2. Zhu, T., Y. Huang and H. Wei, (submitted), Estimating climate feedbacks using neural network, J. Geophys. Res.-Atmos.