
Iden%fying	the	Cloud	Threshold	
•  Clouds	are	iden-fied	using	an	empirically-derived	par-cle	

backsca8er	coefficient	threshold	based	on	visual	iden-fica-on	of	
clouds	from	sky	camera	imagery.	

•  Comparison	to	ceilometer	cloud	base	height	indicates	a	similar	
distribu-on	to	lidar	
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Cloud	Size	and	Op%cal	Depth	
•  Lidar-derived	frequency	(solid)	and	cumula-ve	frequency	(dashed)	

distribu-ons	for	cloud	base	height,	cloud	thickness,	and	cloud	
horizontal	extent:	

Finding	the	Lidar	Constant	(Inversion	with	AOD)	
•  The	raw	lidar	signal	is	converted	to	normalized	rela-ve	backsca8er	

(NRB)	aKer	applying	the	overlap,	aKerpulse,	dead-me,	and	range	
correc-ons:	

•  The	molecular	por-ons	(m)	of	SNRB	are	characterized	using	a	US	
Standard	Atmosphere	Model,	which	agrees	well	with	local	sounding	
measurements.			

•  The	lidar	constant	(C)	is	found	using	a	molecular	fiPng	algorithm	
developed	at	the	University	of	Miami	to	find	the	sta-s-cally	best	
top	of	the	aerosol	layer	and	is	constrained	to	on-site	Aeronet	AOD	
measurement.	

Finding	Ex%nc%on	(Inversion	with	C)	
•  A	molecular	fiPng	algorithm	is	applied	similar	to	that	which	finds	

the	lidar	constant	method,	but	begins	with	the	previously-derived	
lookup	table	of	C	values.	

•  The	new	profile’s	molecular	fiPng	constant	is	combined	with	the	
look-up	C	value	to	solve	for	the	total	op-cal	depth.	

•  The	aerosol/cloud	backsca8er	coefficient	(βa)	,	ex-nc-on	(σa),	
integrated	op-cal	length	(τa)	are	obtained	using	the	Fernald	
algorithm.	

•  Aerosol	and	cloud	are	discriminated	and	separately	characterized	

Conclusion	
•  Clouds	with	op-cal	depths	less	than	one	cons-tute	12%	of	the	

sampled	dataset,	indica-ng	they	are	ubiquitous	in	this	synop-cally-
suppressed	environment.	

•  Such	clouds,	at	this	loca-on,	occur	most	frequently	at	the	top	of	the	
surface-based	mixed	layer,	are	less	than	50	m	thick	and	extend	
horizontally	for	less	than	200	m,	most	frequently	for	110	m	and	
occasionally	up	to	2	km	

•  These	clouds	are	too	small	to	be	detected	by	space-based	lidar	

Introduc%on	
•  Clouds	play	an	important	role	in	Earth's	climate	and	energy	budget.	
•  Clouds	of	low	op-cal	depth	are	underrepresented	in	climate	

models,	with	their	response	to	a	warmer	climate	poorly	
understood,	including	changes	in	their	ver-cal	distribu-on.	

•  Over	South	Florida,	the	small	cumuli	that	are	iconic	of	trade	wind	
regions	are	common	year-round.		This	makes	our	study	site,	located	
3	km	east	of	mainland	Miami,	Florida,	a	good	loca-on	for	studying	
such	clouds.	

•  We	characterize	the	op-cal	depth	and	sizes	of		shallow	cumuli	with	
a	micropulse	lidar	during	a	10	week	period.	
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Aim	
•  Characterize	radia-vely-important	small	shallow	cumuli	clouds	that	

are	too	small	for	robust	characteriza-on	from	space-based	remote	
sensing.	

•  Refine	a	lidar	ex-nc-on	algorithm	to	depict	the	op-cal	depth	and	
sizes	of	small	passive	shallow	clouds.	

	

SNRB(z) = C(�a(z) + �m(z))e�2(⌧a(z)+⌧m(z))

Examples	of	lidar	ex%nc%ons	and	op%cal	depths		
•  Indicate	a)	aerosol	hygroscopic	swelling	barely	becoming	a	cloud	

before	dissipa-ng	again	(la8er	not	shown)	and	b)	mul--layer	
clouds,	at	edges	of	ceilometer-detected	clouds,	indica-ve	of	
Miami’s	two	boundary	layer	(marine	and	land)	
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