Detection of Riming in Stratiform Precipitation Compatibility between 3-frequency Radar and Airborne in-situ Observations during OLYMPEX

Frederic Tridon^{1,2}, A. Battaglia^{1,2}, R. Chase³, J. Turk⁴, S. Kneifel⁵, J. Leinonen⁴, K. Mroz^{1,2}, S. Tanelli⁴, S. Nesbitt³ and A. Heymsfield⁶

Objectives

Radar retrievals of full profiles of precipitation needed for evaluating CRMs \rightarrow main locks in the ice phase

The microphysical characterization of ice particles (size, shape, structure, PSDs, mass-size relation) from observations is still a challenge. Complex microphysics processes (deposition, aggregation, riming) strongly alter these properties.

Rimed and fluffy aggregates have distinct signatures at mm-wavelength radar frequencies \rightarrow optimal matching of multi-frequency radar observations for retrieving ice properties (D_m, IWC).

Study of a coordinated flight transect of frequency radar and in situ triple measurements obtained during OLYMPEX (Houze et al., 2017).

Radar Scattering Tables

SSRGA with different mass-size relations according to the degree of riming (Hogan and Westbrook, 2014 ; Leinonen et al, 2018).

Rimed Aggregates Classification The K_u-K_a combination can be used to approximately detect zones of significant riming (Tridon et al., in preparation).

Case Study: 1st December 2015

Moist southwesterly flow from the Pacific ocean leading to widespread stratiform precipitation over the Olympic Peninsula. Coordinated northwest-northwest DC-8 (APR-3 K_u-K_a-W radar) and Citation (*in-situ* observations) transect from the Olympic Mountains range to the Pacific Ocean.

Radar Observations W-band cross-track swaths.

<u>Affiliations:</u> ¹Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, Leicester, United-Kingdom (Corresponding author e-mail: f.tridon@leicester.ac.uk) ²National Center Earth Observation, University of Leicester, Leicester, UK

³Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Nadir curtains selected from APR-3 K_u, K_a and

Airborne *in-situ* Observations

PSDs obtained via the combination of 2D-S (225 mm<D<1 mm) and HVPS3 (1 mm<D<3.25 cm) probes.

Calculation of IWC and D_m using the mass-size relations corresponding to unrimed, rimed and heavily rimed aggregates and low-density graupel \rightarrow large uncertainty on IWC.

Independent estimates from the Nevzorov probe and from a parameterization taking into account the fractal shape of crystals (Heymsfield, personal communication).

Forward Modelling of Z from *in-situ* $K_{\rm u}/K_{\rm a}$: best agreement with slightly rimed aggregates mass-size relation (SSRGA-LS2015-B0p2kgm2). W-band: the 2-5 dB overestimate can be explained by attenuation from possible supercooled liquid water.

⁶NCAR, Boulder, CO, USA

Example of Retrieval on two Contrasted Profiles

Variational method applied profile by profile: find the best unknowns (WC and D_m profiles) optimally matching the measurements (Z_{Ku} , Z_{Ka} and Z_{w} profiles) using a scattering table relating Z and attenuation to an exponential PSD. For simplicity, melting layer Z is not fitted while its extinction is parameterized as a function of the rain rate underneath.

Fluffy aggregates

Conclusions and Perspectives

Triple-frequency radar measurements have the potential for retrieving a degree of riming of aggregates. This requires a single scattering table which depends on the masssize relation. Future studies will focus on the retrieval of such a parameter and further investigate the error due to the presence of supercooled liquid water.

