Detection of Rimming in Stratiform Precipitation

Compatibility between 3-frequency Radar and Airborne in-situ Observations during OLYMPEX

Frederic Tridon1,2, A. Battaglia1,2, R. Chase3, J. Turk4, S. Kneifel5, J. Leinonen6, K. Mroz1,2, S. Tanelli6, S. Nesbitt3 and A. Heymsfield1,6

Objectives
Radar retrievals of full profiles of precipitation needed for evaluating CRMs
main locks in the ice phase
The microphysical characterization of ice particles (size, shape, structure, PSDs, mass-size relation) from observations is still a challenge. Complex microphysics processes (deposition, aggregation, riming) strongly alter these properties.
Rimed and fluffy aggregates have distinct signatures at mm-wavelength radar frequencies
optimal matching of multi-frequency radar observations for retrieving ice properties (Dw, IWC).
Study of a coordinated flight transect of triple-frequency radar and in situ measurements obtained during OLYMPEX (Houze et al., 2017).

Radar Scattering Tables
SSRGA with different mass-size relations according to the degree of riming (Hogan and Westbrook, 2014; Leinonen et al., 2018).

Case Study: 1st December 2015
Moist southwesterly flow from the Pacific ocean leading to widespread stratiform precipitation over the Olympic Peninsula. Coordinated northwest-northwest DC-8 (APR-3 K\textsubscript{r}/K\textsubscript{s}; W radar) and Citation (in-situ observations) transect from the Olympic Mountains range to the Pacific Ocean.

Airborne in-situ Observations
PSDs obtained via the combination of 2D S (225 mm<3<1 mm) and HVPS3 (1 mm<3<3.25 cm) probes. Calculation of IWC and Dw using the mass-size relations corresponding to unrimed, rimed and heavily rimed aggregates and low-density graupel \(\rightarrow\) large uncertainty on IWC.
Independent estimates from the Nevzorov probe and from a parameterization taking into account the fractal shape of crystals (Heymsfield, personal communication).

Forward Modelling of Z from in-situ
K\textsubscript{r}/K\textsubscript{s} best agreement with slightly rimed aggregates mass-size relation (SSRGA-L52015-B0p25km2).
W-band: the 2-5 dB overestimate can be explained by attenuation from possible supercooled liquid water.

Example of Retrieval on two Contrasted Profiles
Variational method applied profile by profile: find the best unknowns (WC and D\textsubscript{s}) profiles optimally matching the measurements (Z\textsubscript{tt}, Z\textsubscript{rr} and Z\textsubscript{vv} profiles) using a scattering table relating Z and attenuation to an exponential PSD. For simplicity, melting layer Z is not fitted while its extinction is parameterized as a function of the rain rate underneath.

Fluffy aggregates

Rimmed aggregates

Full leg Retrieval/Comparison
Good homogeneity between successive retrieved profiles. Confirmation that slightly rimed aggregates are present for the majority of the leg.

Conclusions and Perspectives
Triple-frequency radar measurements have the potential for retrieving a degree of riming of aggregates. This requires a single scattering table which depends on the mass-size relation. Future studies will focus on the retrieval of such a parameter and further investigate the error due to the presence of supercooled liquid water.

References:

1,2 Earth Observation Sciences, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
3 National Center Earth Observation, University of Leicester, Leicester, UK
4 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Affiliations:

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2 Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
3 NCAR, Boulder, CO, USA