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The new LIMA (Liquid Ice Multiple Aerosols) microphysical scheme (vi¢ et al. 2016) predicts six water
species (water vapor, cloud water, rainwater, primary ice crystals, snow aggregates, an graupel?. LIMA
uses a two-moment parameterization for three hydrometeor species (ice crystals, cloud droplets, and The French anelastic research IOP 6 flight

raindrops (Cohard et al. 2000)), and is derived from the one-moment scheme ICE3 used daily in the AROME model Meso-NH (Mesoscale -
IOP 16 flight
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METHODS

cloud resolving operational model at Météo-France. In addition, it integrates a prognostic representation Non-Hydrostatic, Lac et al. dicdrometers
of the aerosol population. The Cloud Condensation Nuclei (CCN) activation is parametrized following 2018) 1s used to simulate two | _
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15 minutes mean processes which lead to overpredict rain drops diameters:
e MVD profile increases in the mean
e Sedimentation (SEDI) process affect significantly r, and N,
e Rain evaporation (REVA) and Self-collection / break-up (SCBU) reduce N, vertical profile
eRain accretion (ACCR) increase r, profile

In the previous section, the rain drops size distribution p parameter was identify as a
possible driver of action on number concentration.
eBoth new p-parameterization lead to reduce the area where median diameters of rain

drops exceed 3 mm:

vwater content estimation

LIMA at 11:15UTC ~ uDIAG at 11:15UTC
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CONCLUSION
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e Cloud top (~ upper part of the highest frequencies): observed to be near 10
km as with the LIMA simulation and overestimated near 12 km by ICE3.

scheme — better transition between ice and liquid water.
More results are presented in Taufour et al. (2018)
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e LIMA parameterization: nearly all points containing cloud water lie under the bound of
cloud droplet concentration N.=550 cm™ and under the bound of N.=300 cm™ for
negative temperatures.

eCloud droplets distribution shifts to the right (resp. left) of the N.=300 cm™ line for
higher (resp. lower) CCN concentration — Increasing CCN concentration leads to
more numerous, but smaller, droplets for a given liquid water content.

eReducing IFN concentration increase the frequency of cloud droplets at temperatures
below -10°C.
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