METEO FRANCE

Simulation of Deep Convective Clouds from the HyMeX Campaign using a Realistic Population of CCN and IFN

Benoît Vié, Marie Taufour

CNRM (Météo-France/CNRS) – Toulouse, France

Contact: benoit.vie@meteo.fr

INITIALIZING THE 2-MOMENT SCHEME LIMA WITH CAMS AEROSOL ANALYSES

The 2-moment scheme LIMA (Vié et al. 2016)

Built upon ICE3, Météo-France's operational 1m scheme
Explicitly represents aerosol-cloud interactions

CAMS aerosol analyses and forecasts

Input data:

Produced twice daily, in near-real-time

~40km horizontal resolution and 60 vertical levels
Assimilation of MODIS AODs to constrain C-IFS
11 prognostic aerosol mass mixing ratios

→Conversion into number concentration needed !
→Choice of activation properties needed !

Choice of size distribution parameters to convert CAMS mass mixing ratios into number concentrations

- Parameters chosen to use a CAMS aerosol climatology in the IFS radiative transfer scheme (*Bozzo et al. 2017*)
- •Climatological aerosol properties from the Global Aerosol Data Set *(Köpke et al. 1997)*
- Average aerosol properties in the Mediterranean region from the ESCOMPTE experiment (*Mallet et al. 2003*)
- Average aerosol properties over Europe from a 3-month MOCAGE (CNRM's CTM) forecast period

1.00	1 . 1	• • • •

Competition between several types of CCN / IFN

• **Prognostic** variables for **hydrometeors and aerosols**

→Needs a realistic aerosol population

Mass mi	xing ratio (kg.	l.kg⁻¹)	
	Sulfate	LIMA data: Number concentration (+	[kg⁻¹)
Sea	a salt (3 bins)	Grouping species	
Ну	drophilic OM	Sulfate	
Нус	drophobic OM	Sea salt	
Ну	drophilic BC	Hydrophilic OM/BC	
Hy	drophobic BC	Hydrophobic OM/BC	
D	oust (3 bins)	► Dust	

→ Despite some differences and the necessity to choose between Aïtken and accumulation modes for some aerosols, there seems to be a good agreement for the following PSD parameters:

Microphysical properties Size distribution parameters

CCN, r=0.05 μm, σ=2, ρ=1700 kg.m⁻³

CCN, r=0.2 μm, σ=2, ρ=2200 kg.m⁻³

Coated IFN, r=0.02 μ m, σ =2.2, ρ =1800 kg.m⁻³

IFN, r=0.02 μm, σ=2.2, ρ=1800 kg.m⁻³

IFN, r=0.4 μm, σ=2, ρ=2600 kg.m⁻³

CAMS REANALYSES EVALUATION

During HyMEX (autumn 2012), 29 flights of the ATR42 aircraft sampled air masses before heavy precipitating events with several aerosol observation instruments

HYMEX DEEP CONVECTION SIMULATION

Simulations of HyMeX IOP 6 (2012/09/24) and IOP 16 (2012/10/26) heavy precipitating events were carried out using LIMA in the Meso-NH model (*Lac et al. 2018*) with various aerosol initializations to perform an evaluation of the scheme (*Taufour et al. 2018* + *poster 254*) and study the impact of aerosols on HyMeX deep convection.

LIMA
$N_{CCN} = 300 \text{ cm}^{-3}, \downarrow \text{ with}$
$N_{\rm IFN} = 10000 \ {\rm L}^{-1}$

LIMA MACC aerosols

- •1 CCNC: number of CCN at S=0.3%
- 2 CPCs: number of aerosols >10nm
- 1 FMPS: PSD of aerosols $5 \rightarrow 500$ nm
- 1 SMPS: PSD of aerosols $20 \rightarrow 400$ nm
- 1 OPC: PSD of aerosols 0.25 \rightarrow 32µm

CAMS evaluation

- •Compare CAMS to the aerosol mass estimated from observed PSDs
- Good representation of aerosol loading and vertical profile in most cases

Evaluation of retrieved concentrations

- Some cases show an underestimation of aerosols in the accumulation mode
 × Dust → 0.8 µm mode not obs. in OPC
 × Assumed PSDs too wide comp. to OPC
- Number of Aïtken mode aerosols fits observations well for most cases

Homogeneous vs. CAMS aerosols

- Using CAMS aerosols results in a higher variability of cloud composition.
- •**Differences** on accumulated precipitation for IOP 6 are small, and located SE of the main system, **where orographic forcing is lower**.
- •IOP 16 accumulated precipitation is more sensitive to aerosol loading, both over sea and land, but using CAMS aerosols slightly degrade scores.
- In both cases, a higher impact was found on instantaneous rain rates and the evolution of convective systems.

CONCLUSION

Initializing aerosols for LIMA with CAMS analyses and forecasts:

CAMS provides global analyses and forecasts of mixing ratios for several aerosols
 PSD parameters are estimated from different bibliographical references
 LIMA benefits from a realistic, day-to-day aerosol population

Evaluation of CAMS aerosols compared to in-situ observations from HyMeX:
 CAMS provides a good representation of aerosols compared to 29 ATR42 flights
 × Some cases show an underestimation of retrieved aerosol concentration (SS + D)

Simulation of HyMeX heavy precipitating events with realistic CAMS aerosols: Higher impact on cloud composition and rain intensity than on accumulated rain
Sensitivity to aerosols depends on case characteristics (e.g. forcing mechanisms)

Prospects:
→Investigate the choice of dust and sea-salt PSD parameters
→Study the impact of aerosols for other situations: fog (poster 41), aircraft icing...

•Bozzo et al., 2017. Implementation of a CAMS-based aerosol climatology in the IFS. *ECMWF technical memorandum 801*.

•Köpke et al., 1997. Global Aerosol Data Set. *Max-Plank-Institut Report 243*.

•Lac et al., 2018. Overview of the Meso-NH model version 5.4 and its applications. *Geoscientific Model Development*, 11:1929–1969.

•Mallet et al., 2003. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE. *Atmospheric Research*, 69:73-97

Taufour et al., 2018. Evaluation of the two-moment scheme LIMA based on microphysical observations from the HyMeX campaign, *Quarterly Journal of the Royal Meteorological Society*, DOI: 10.1002/qj.3283
Vié et al., 2016. LIMA (v1.0), A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei. *Geoscientific Model Development*, 9(2): 567–586

ACKNOWLEDGMENTS

Data were obtained from the HyMeX program, sponsored by Grants MISTRALS/HyMeX and ANR-11-BS56-0005 IODA-MED project. The authors especially thank T. Bourrianne and F. Burnet (CNRM), and A. Schwarzenboek and E. Freney (LaMP) for their help with the aerosol observations.

