

Exploration of California High Resolution Snowpack Modeling with Realistic Surface-Atmospheric Radiation Physics

Chaincy Kuo, Alan Rhoades, Daniel Feldman Lawrence Berkeley National Laboratory

AMS 15th Conference on Cloud Physics & Atmospheric Radiation July 9, 2018. Vancouver, BC, paper #3.6

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

Problem statement

- California water management
 - Urban use: most populous state
 - California is the top state agricultural supplier: 13% of United States produce
 - Large-scale water infrastructure
- Seasonal precipitation
 - Flood risk vs. storage for dry season usage
- Prediction in changing climate
 - Pacific Ocean moisture on orography drives precipitation
 - Mountain snowpack for ~ 30% California water supply
 - Models need to accurately predict snowpack in changing climate

Surface temperature cold bias in California models over mountain region

Radiation Band	Surface Process modeling	Atmospheric process modeling	CESM models
Shortwave	Albedo	Cloud scattering	Yes
Longwave	Spectral emissivity	Cloud scattering	No

- LW surface emissivity in CESM: Arctic surface temperature warming
 - C. Kuo et al, 2018, JGR-Atmos
 - X. Huang et al, 2018, J. Climate
- LW cloud scattering: Significant downward LW surface flux.
 - C.-P. Kuo et al, 2017, JAMES

CESM=Community Earth System Model (National Center for Atmospheric Research, Boulder Colorado, US)

Surface temperature cold bias in California model over mountain region

Radiation Band	Surface Process modeling	Atmospheric process modeling	CESM models
Shortwave	Albedo	Cloud scattering	Yes
Longwave	Emissivity	Cloud scattering	No

CESM=Community Earth System Model (National Center for Atmospheric Research, Boulder Colorado, US)

Variable resolution global circulation model captures high resolution topography over California

Atmospheric rivers modeled in general circulation model

20

Regional high resolution captures orographical-influence on weather

EESA E

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATIORY

Surface Temperature cold bias amplitude increases in dry atmospheres

Altitudinal Model Biases Colder in elevation

- CAL_VR55 - MG1

ESA

Rhoades et al, 2018, JAMES

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

Surface Temperature cold bias amplitude increases in dry atmospheres

Seasonal Model Biases Colder in winter

Altitudinal Model Biases Colder in elevation

Longwave processes

Radiation Band	Surface Process modeling	Atmospheric process modeling	CESM models
Shortwave	Albedo	Cloud scattering	Yes
Longwave	Spectral Emissivity	Cloud scattering	No

EARTH AND ENVIRONMENTAL SCIENCES · LAWRENCE BERKELEY NATIONAL LABORATORY

EESA

Spectral emissivity updates improved surface temperature bias in Arctic.

Applicability to California Mountain Range?

Emissivity implemented in CESM. $\varepsilon(v)$

X.Chen et al, 2014,GRL

Surface type	CESM.LME	CESM. <i>ε</i> (ν)
Land-ice	0.97	0.98
Sea-ice	0.95	0.98

C.Kuo et al,2018,JGR-Atm

Arctic surface temperature bias improved in CESM- $\varepsilon(v)$

CESM- $\varepsilon(\nu)$: C.Kuo et al,2018,JGR-Atm CESM-LME: Otto-Bliesner et al, 2016, BAMS

😂 EESA

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

C.Kuo et al, *in prep*

Model surface LW fluxes increases in wintertime for CESM. $\varepsilon(v)$ over sea-ice

Radiative surface fluxes, Climatological, 1990-2005

Radiative surface fluxes, Climatological 1990-2005

C.Kuo et al, in prep

Model near surface supersaturation in wintertime removed over sea-ice in CESM. $\varepsilon(v)$

Model near-surface ice and liquid mixing ratios, climatological 1990-2005

C.Kuo et al, *in prep*

Longwave processes

Radiation Band	Surface Process modeling	Atmospheric process modeling	CESM models
Shortwave	Albedo	Cloud scattering	Yes
Longwave	Spectral Emissivity	Cloud scattering	No

EESA

Far-IR multiple scattering in clouds show elevation dependent longwave ice-cloud surface forcing

- MODIS Collection 6 cloud models
- Optical properties:
 - Yang et al, 2013, JAS
- Ice-cloud scattering calculation using RRTMG and DISORT
- Longwave surface downward bias calculated for 2010 in global 1°×1° model.

Longwave surface downward flux bias when scattering is ignored

Kuo, C.-P., et al.,2017,*JAMES*. https://doi.org/10.1002/ 2017MS001117

Ice cloud amount modeled in high resolution grid through tropopause over California Sierra Nevada Mountain region

In process calculations:

- Optical properties for rough hollow bullet rosette
 Yang et al, 2013, JAS
- Ice-cloud scattering calculation using LBLRTM and CHARTS
- Longwave surface downward bias over high resolution grid cells in Sierra Nevada

Cloud ice amount. Cloud ice amount. 2 deg model 7km model Elevation above ground [km] Elevation above ground [km] Elevation above ground [km] Elevation above ground [km] January July January July 0.0040 0.0035 21.2 21.8 0.0030 15.6 0.0025 5 11.6 0.0020 7.6 0.0015 3.1 0.0010 1.0 0.2 0.0005 222 288 194 189 177 442 CAL 492 492 492 CAL 225 109 0 0000 Longitude Longitude Longitude Longitude

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

Summary

- California mountain region surface temperature seasonal and altitudinal cold bias is not explained by GCM model processes influencing surface/atmospheric radiative fluxes
 - Shortwave
 - Snow cover biases do not manifest elevation-dependence
 - Precipitation bias occurs at the highest modeled elevations
 - Longwave
 - Spectral emissivity: Mechanism for cold surface temperature bias improvement in Arctic is not indicated for snow-covered land.
- Ice cloud amount in 7 km grid resolution California global circulation model (GCM) has higher contrast through the tropopause than a 2 deg grid resolution GCM over the California mountain region.
 - Cloud scattered longwave surface downward flux is indicated as a missing model component to explain surface temperature cold bias.
 - Offline calculations are continuing.

Acknowledgments

- Xianglei Huang, University of Michigan
- Mark Flanner, University of Michigan
- Xiuhong Cheng, University of Michigan
- Ping Yang, Texas A&M
- Chia-pang Kuo, Texas A&M
- Charles Koven, Lawrence Berkeley National Laboratory
- This material is based upon work supported by the U.S. DOE BER SciDAC, under contract number DE-AC02-05CH11231 and also NASA Grant NNL16AA60I

