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1. INTRODUCTION 
 

The NASA Orbiting Carbon Observatory-2 
(OCO-2) mission is designed to retrieve the dry air 
column integrated mole fraction of carbon dioxide 
(XCO2) at sufficiently high accuracy to allow 
estimation of surface CO2 fluxes at regional scales 
(Crisp 2015). Since the launch of OCO-2 in 2014, 
the instrument has shown excellent accuracy and 
precision) for L1b radiance products (Crisp 2017). 
For the L2 XCO2 retrieval product, operational bias 
correction and filtering methods yield a global XCO2 
dataset with an uncertainty estimated to be 0.4 
ppm, when compared to co-located TCCON 
measurements (Wunch 2017). On a smaller spatial 
scale, there are known correlated errors (or 
equivalently, regional biases) that are possibly 
related to aerosol or surface property modeling in 
the L2 retrieval. 

In this study, we attempt to reduce some of 
the apparent bias in the L2 retrieval due to aerosol 
modeling by utilizing data from the CALIOP LIDAR 
instrument aboard the CALIPSO spacecraft. OCO-
2 and CALIPSO are both in the NASA A-Train 
instrument formation, and since August 2015 the 
two spacecraft have flown in a tight formation that 
aligns the LIDAR footprint inside OCO-2’s swath. 
The resulting spatial footprints match to with 4 km 
at the surface. 

Customized data files containing CALIOP 
L2 layer retrieval data co-located to OCO-2 
footprints are routinely processed at CIRA’s Data 
Processing Center, along with various MODIS-
Aqua cloud and imagery products. These data 
products have proven useful in validation of OCO-2 
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cloud screening validation (Taylor 2016). Recent 
reprocessing of the data has included the version 4 
CALIOP aerosol layer retrievals, which contain 
various improvements in aerosol detection and 
optical depth retrieval (Kim 2018). 

The general approach in this study is to use 
CALIOP’s knowledge of the aerosol presence and 
vertical placement as prior information for the OCO-
2 L2 retrieval. For this initial study, only cloud free 
scenes are selected. Cloud screening is performed 
by limiting the analysis to orbits where the 
operational OCO-2 cloud screening mask, the 
CALIOP vertical feature mask, and RGB imagery 
from the Aqua MODIS instrument all indicate large 
regions of cloud free atmosphere. Note the OCO-2 
cloud screening methods will also remove thicker 
aerosol layers, as the screening methods are 
sensitive to scattering particle layers of any type 
(see Taylor 2016 for details). We assume that any 
thin aerosol layers present in the data after 
screening are spatially homogeneous. In section 2, 
we briefly review the OCO-2 L2 algorithm and our 
modifications to include the CALIOP layer data. The 
OCO-2 data subset and TCCON comparison data 
are described in section 3, followed by analysis 
procedures in section 4. Our results are shown in 
section 5, followed by conclusions in section 6. 

2. RETRIEVAL ALGORITHM 
 

The operational OCO-2 L2 algorithm 
(known as the ACOS algorithm) is fully described 
by the L2 Algorithm Theoretical Basis Document 
(ATBD) and O’Dell 2018. Briefly, the algorithm is a 
standard optimal estimation (OE) approach applied 
to a physical forward model to compute radiances 
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at the OCO-2 spectral sampling grids. The forward 
model, for the current Build 8 (B8) version of ACOS, 
includes 5 scattering particles: water cloud, ice 
cloud, stratospheric aerosol, and two tropospheric 
aerosols selected from a MERRA climatology. All 
aerosols have a Gaussian vertical profile for 
concentration (𝜌), using the following equation, 

𝜌 𝑥 = 𝐶	𝑒𝑥𝑝 −
𝑥 − 𝑥) *

2𝜎*
 

where 𝑥 is the pressure relative to the surface 
pressure (scaled pressure height), and 𝜎 is the 
scaled pressure width. The constant 𝐶 is set such 
that the total vertical integral is equal to the required 
aerosol optical depth (AOD) at 755 nm, and the 
logarithm of the AOD is included in the state vector. 
The constant 𝑥) is the scaled pressure level for the 
center of the aerosol layer. All aerosols have fixed 
pressure widths and the stratospheric aerosol has 
a fixed pressure height (𝑥) = 0.006). The remaining 
nine parameters: OD for the five particles, and 
pressure heights for both MERRA aerosols and 
cloud types, are unconstrained by the OE prior. 
Thus, a simple way to utilize the CALIOP derived 
aerosol information is to set different prior means 
and uncertainties for these nine parameters 
according to the CALIOP layer data. 
 
2.1 MODIFIED RETRIEVAL ALGORITHM: 
CALIOP-DERIVED PRIORS 
 

The CALIOP retrieval produces a highly 
accurate vertical position of the aerosol layer. 
However, the extinction optical depth of the aerosol 
layer has higher uncertainty, due to assumptions 
about aerosol types via the Lidar ratio (Kim 2018, 
Oo 2011). To translate the optical depth values to 
OCO-2, an aerosol optical depth from CALIOP 
would need to be converted into an extinction 
optical depth at 755 nm, which would incur 
additional uncertainty. For clouds, the Lidar ratio 
has much less variability, and thus the CALIOP 
cloud optical depth has relatively less uncertainty. 
Finally, the detection limit of CALIOP must be 
considered. A “clear scene” as defined by the 
CALIOP retrieval may still have thin undetected 
aerosol layers, especially since we are using the 
daytime observations where scattered solar 
radiation degrades the LIDAR’s signal to noise 
ratio. Our prior constraint values for OCO-2 
retrievals must therefore allow for relatively thin 
aerosol layers to be included in the forward model, 
rather than simply removing the aerosols 
completely from the state vector. 

The translation of the CALIOP layer data 
into a prior for the OCO-2 retrieval algorithm is a 
partially subjective process, guided by intuition. The 
general characteristics of the CALIOP retrieval 
suggests that the layer height information should be 
used as a tight constraint for ACOS, while the AOD 
should be a relatively loose constraint. The cloud 
optical depth constraint should be intermediate, 
since the CALIOP cloud optical depth should be 
more accurate. For cases where the CALIOP 
retrieval does not detect a cloud or aerosol layer, 
we use a prior value for OD that is much lower than 
the ACOS B8 but leave the prior uncertainty 
relatively large (factor of 4). This allows the ACOS 
algorithm to fit thin aerosol layers (tau < 0.03) that 
are likely undetected by CALIOP (Kim 2017). Table 
1 summarizes the prior mean and (1-σ) standard 
deviation for each of these variables. Note that the 
uncertainty ranges for the optical depths are 
multiplicative (e.g., ± 6 implies that 1-sigma range 
is a multiplicative factor of 6). 
 

Parameter B8 Oper. 
Prior  

Modified 
value 
(CALIOP 
clear) 

Modified 
value 
(CALIOP 
detection) 

OD mean  
Water Cld  0.0125 0.002 CALIOP 

L2 layer 
OD 
 

Ice Cld 0.0125 0.002 
Trop. Aer MERRA  0.002 

x0 mean  
Water Cld  0.75 0.75 CALIOP 

L2 layer 
P/Ps 

Ice Cld tropopause 0.3 
Trop. Aer 0.9 0.9 
OD uncert.  
Water Cld  ± 6 ± 1.5 ± 1.5  
Ice Cld ± 6 ± 1.5 ± 1.5 
Trop. Aer ± 7.4 ± 4 ± 5 
x0 uncert.  
Water Cld  ± 0.4 ± 0.4 ± 0.005 
Ice Cld ± 0.2 ± 0.05 ± 0.005 
Trop. Aer ± 0.2 ± 0.2 ± 0.005 
Table 1. Summary of Aerosol and cloud related state 

vector variables used in the ACOS retrieval, for the B8 
operational algorithm, and the modified version using 

CALIOP clear, and CALIOP layer detections. 
 

After adjusting the prior aerosol 
information, the operational algorithm was rerun 
over sets of OCO-2 soundings, described in section 
3. Other than the adjustment to the aerosol prior, 
the modified algorithm is identical to the B8 
operational algorithm. 
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3. DATASETS 
 
3.1 OCO-2 SOUNDINGS 
 

OCO-2 orbit tracks were selected through 
two geographical regions: the Eastern Saharan 
desert and the central plains region of the US. The 
first region was chosen for this study due to the 
relatively high fraction of cloud free, aerosol 
affected scenes. For these cases, cloud free 
scenes were selected from OCO-2 Nadir 
observation geometry that crossed with a latitude 
and longitude box covering the Eastern Sahara 
(17.5º – 32.5º latitude, 10º – 35º longitude). To limit 
the total amount of data, orbits were included from 
every third month between December 2015 and 
ending in March 2017. A total of 53 orbits were 
selected. The second region was chosen to allow 
for comparison to the TCCON station at Lamont, 
Oklahoma. For these cases, the matchup requires 
a part of the OCO-2 Nadir track to pass within ± 6° 
longitude of the TCCON site, similar to matchup 
criteria of TCCON – OCO-2 in previous studies 
(O’Dell 2018, Wunch 2017). A total of 48 OCO-2 
orbits were selected from this data group from 
August 2015 to October 2017. To limit the total 
amount of sounding data, only the subsets of 
soundings within ± 1° latitude of Lamont are 
included. The resulting matchup region is 12° in 
longitude and 2° in latitude, centered on Lamont. 

For each of the identified passes, the OCO-
2 soundings that appear in the spatial selection 
window are further divided into “small areas”. 
Following O’Dell 2018, the orbit segment is first 
subdivided into blocks of spatially contiguous 
soundings. Each block is recursively divided in half, 
until the blocks have no more than 50 frames. At 
the typical spacing of OCO-2 soundings (each 
frame of 8 soundings is separated by approximately 
2.3 km along track), this yields a spatial area of 
approximately 100 km along track. Within this small 
area, in the absence of strong CO2 point sources 
(such as power plants), the true spatial variability of 
XCO2 is much smaller than the single sounding 
uncertainty. For example, the spatial variability 
estimated from simulated XCO2 fields is smaller than 
0.1 ppm on 100 km spatial scales (Worden 2017). 
Therefore, we compute simple statistics (mean and 
standard deviation) over the group of soundings 
within each small area in order to evaluate the 
retrieval output. A typical small area will have 
several hundred soundings (50 frames with 8 
soundings each, minus those soundings rejected 

by the various filtration steps), and a minimum of 30 
soundings, as small areas with fewer soundings are 
discarded. The standard deviation over these 
soundings is an empirical estimate of the true 
scatter in the retrieved XCO2. Figure 1 shows an 
example from each region, where the mapped 
points are colored according to the small area 
subdivisions. The small area subdivision yields a 
total of 416 small areas in the Sahara group, and 
129 small areas in the Lamont group. 

 
Figure 1. Example OCO-2 ground tracks used in the 
study, colored according to small area subgroupings: 

Eastern Sahara region (top) and central US plains 
(bottom). The position of the Lamont TCCON site is 

marked with a red star. 
 
3.2 TCCON DATA 
 

The Lamont TCCON data was accessed 
from the TCCON website (Wennberg 2017). The 
TCCON retrieval produces hundreds of daytime 
XCO2 samples, limited to clear sky conditions. Using 
a matchup window period of 2 hours before and 
after the OCO-2 overpass time, each day contains 
roughly 50 TCCON samples. These are averaged 
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to a single TCCON comparison value for each 
OCO-2 orbit in the data sample. 

4. ANALYSIS 
 

To evaluate the modified retrieval output, 
we compare XCO2 and two variables used in XCO2 
bias correction: “delta surface pressure”, and “co2 
grad del”. The first variable (called “dP” in short 
form) is the difference between the retrieved 
surface pressure and the prior surface pressure 
from Numerical Weather Prediction analysis fields 
(O’Dell 2018). The second variable, “co2_grad_del” 
is the difference between the retrieved and prior 
values of the vertical gradient of the CO2 
concentration profile. The vertical gradient is 
approximated with the finite difference between the 
CO2 concentration at the surface and at 0.7 times 
the surface pressure. Both variables have been 
used for bias correction in ACOS applied to OCO-2 
soundings and GOSAT soundings (Wunch 2011, 
O’Dell 2018, OCO-2 ATDB, 2017). 

For the XCO2 analysis, we consider the raw 
XCO2 and two versions of bias corrected XCO2. The 
linear bias correction for XCO2 is derived from 
analysis of global OCO-2 data compared to several 
“truth proxy” datasets for XCO2 (O’Dell 2018). The 
bias correction process reduces both bias (e.g., the 
mean difference between the retrieved XCO2 and the 
truth proxy) and scatter (the standard deviation of 
the XCO2 differences). We do not necessarily expect 
the bias correction derived for the Version 8 ACOS 
algorithm to be optimal for the modified algorithm. It 
is likely that the operational bias correction is 
mitigating the impact of aerosol modeling errors to 
some extent, and our modified algorithm has 
important changes to the algorithm’s treatment of 
aerosol. However, developing a bias correction 
scheme requires a much larger amount of data, 
including global coverage and spanning the widest 
possible range of scene conditions. We cannot 
derive a similar correction for our modified 
algorithm using the standard approach, because 
there is not sufficient data. 

Due to these limitations, we apply a 
modified, “partial” bias correction that applies only 
the global scaling factor and the footprint-
dependent bias correction. These two components 
of the bias correction are likely present in the 
modified algorithm output in a similar way as the 
operational ACOS algorithm output. This partial 
bias correction does not include the parametric 
terms (dP, co2_grad_del, and an aerosol optical 

depth variable; see O’Dell 2018, L2 ATBD). Finally, 
the full operational B8 bias correction is applied to 
both datasets, while acknowledging that the results 
for the modified algorithm may not be optimal. 

5. RESULTS 
 

After performing the various processing 
described in the previous section, we have mean 
and standard deviation values for the 5 variables 
(dP, co2_grad_del, raw and two bias corrected 
XCO2) in each small area. In each case, we compute 
the same values from the operational B8 retrieval 
output from the same soundings. In all cases we 
only examine the subset of soundings that are 
deemed “good quality” according to the B8 data 
quality assessment (See O’Dell 2018). 

Since the modified algorithm impacts the 
aerosol retrieval, the analysis is aided by defining a 
new variable that is the ratio between the total AOD 
in the modified retrieval and the total AOD in the 
operational retrieval. Values greater than unity 
indicate that the modified algorithm retrieved more 
AOD (in the small area average), and less than 
unity indicates less AOD in the small area average. 
Generally, values less than unity correspond to 
small areas where the CALIOP did not detect an 
aerosol layer, so the tendency is for the modified 
prior to suppress the total AOD. 

Figure 2 shows a scatter plot of the 
difference in dP (left column) and co2_grad_del 
(right column) between the modified and 
operational algorithm results. The top row contains 
the differences in the small area mean values, and 
the bottom row contains the differences in small 
area standard deviation values. Results for the East 
Saharan region are shown in orange, and the near 
Lamont region results are shown in blue. The dP 
difference in mean shows a clear correlation to the 
AOD ratio. The modified algorithm shows a higher 
dP bias when the retrieved AOD is lower than 
operational, and lower dP bias when the retrieved 
AOD is higher than normal. The dP bias is also 
lower at a ratio of unity, indicating that the 
modification will tend to reduce dP even if the AOD 
does not change – in which case the aerosol height 
prior change is causing the differences. Retrievals 
from both regions show similar patterns, however 
the quantitative distributions are slightly different. 
For the dP standard deviation, we see a tendency 
for reduced scatter in dP with lower AOD, and 
increased scatter for higher AOD. The 
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co2_grad_del shows weaker correlation, but with a 
reversed correlation sign for the difference in mean. 

Figure 3 shows the raw XCO2 (left column) 
and full bias corrected XCO2 (right column), 
displayed with similar coordinates to Figure 2. The 
partial bias correction results are not shown. For the 
partial bias correction, the primary change is the 
global scaling factor, which affects both results 
equally, and therefore there is no significant change 
in the differences. For XCO2, there is larger 
separation between the results from the two data 
regions, primarily in the mean raw XCO2 (upper left). 
The scatter in raw XCO2 shows the clearest 
evidence of improvement in the modified retrieval. 
Recall that for these small areas, the scatter (as 
estimated by the standard deviation) will be driven 
almost entirely by uncertainty in the retrieval, not 
real signatures in the XCO2 field. In the lower left 
panel, the raw XCO2 scatter is reduced by 
approximately 0 – 0.5 ppm for cases where the 
modified algorithm retrieves less AOD. For the 
reverse case (more AOD in modified retrieval), the 
scatter increases, with some extreme values (up to 
+2 ppm) for the largest AOD increase. After bias 
correction, this improvement disappears. The 
difference between the bias corrected XCO2 is nearly 
uncorrelated with the AOD ratio, and centered on 
zero (meaning, no change in XCO2 scatter). 

Finally, for the Lamont dataset, we can 
compare the TCCON and OCO-2 XCO2 values. For 
each OCO-2 orbit, each small area produces a 
mean XCO2 value, and these multiple values are 
compared to the single TCCON mean value for the 
overpass time. There may be additional true 
variation in the XCO2 field between small areas, 
which we cannot estimate. However, this additional 
variation will impact both the operational algorithm 
and the modified algorithm, so it should not change 
the relative comparison between the two 
algorithms. Figure 4 shows scatter plots and 
summary statistics for the OCO-2 – TCCON results. 
The left column shows the operational results, and 
the right column shows the modified algorithm 
results, where the rows show the comparison with 
raw OCO-2 XCO2 (top), partial bias corrected OCO-
2 XCO2 (middle), and full bias corrected OCO-2 XCO2 
(bottom). Each subplot shows the correlation 
coefficient, and the standard deviation and bias (the 
mean value) of the OCO-2 – TCCON differences. 
All variants of XCO2 from the modified algorithm 
show an increase in bias magnitude of 0.3 ppm 
compared to the operational algorithm. The 
modified algorithm shows an approximately 20% 

reduction in scatter in raw	ΔXCO2 and in partial bias 
corrected raw	ΔXCO2 (from 1.2 to 1 ppm). For the full 
bias correction, both algorithms show identical 
scatter (0.95 ppm). 

 
 

 
Figure 2. Results for dP and co2_grad_del from Sahara 
(Orange) and Lamont (Blue), plotted versus AOD ratio. 

 

 
Figure 3. Results for raw XCO2, and bias corrected XCO2, 

plotted analogously to Figure 2. 
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Figure 4. Comparison of Operational Algorithm (left) and 

Modified Algorithm (right) to TCCON. Rows show 
different XCO2 values: raw (top), partial bias corrected 

(middle), and full bias correction (bottom). 

6. CONCLUSIONS 
 

This study evaluated a simple method of 
applying CALIOP aerosol retrieval information to 
OCO-2 algorithms with the aim of improving the 
XCO2 retrieval. Overall, the raw XCO2 shows reduced 
scatter in small area statistics, but only when the 
modified retrieval has less AOD than the 
operational retrieval. After the full bias correction, 
the two algorithms show equivalent XCO2 scatter. 
Note that the modified algorithm’s XCO2 does show 
similar scatter to the full bias corrected, operational 
XCO2 (0.99 compared to 0.95 ppm). The modified 
algorithm shows an increased absolute XCO2 bias of 
0.36 ppm relative to the Lamont TCCON. 

The results do not support a general 
conclusion that CALIOP data will not improve XCO2 
retrievals using ACOS. If additional analysis can 
produce an optimal bias correction for the modified 
algorithm, it may compare more favorably to the 
operational algorithm. In addition, the results do 
suggest that a more sophisticated approach than 
aerosol prior modification should be explored. 
Additional research is needed to explore alternative 
methods. Here we summarize various limitations of 
the presented approach, and suggest further 
research that could better utilize CALIOP data to 
improve XCO2 retrieval: 

1) The presented approach relies on 
CALIOP L2 aerosol layer retrievals. This introduces 
undesirable artifacts in the ACOS retrievals near 
the spatial edges of the CALIOP aerosol layer. For 
example, at the edges of each CALIOP layer 
feature (which will have a horizontal length of 5, 20, 
or 80 km depending on the spatial averaging 
applied to the Level 1B CALIOP data – see CALIOP 
L2 ATBD), there will be neighboring soundings that 
have very different priors (see Table 1). In addition, 
this translation would not be effective for any cases 
with multiple vertical layers, since the single 
aggregated CALIOP layer and single Gaussian 
profile used by the ACOS retrieval need to be 
reasonable approximations of the true aerosol 
vertical profile. 

2) No attempt has been made to utilize the 
CALIOP aerosol type information, due to the 
uncertainty of translating the CALIOP retrieved 
AOD at 532 nm to OCO-2 AOD referenced to 755 
nm. A more accurate approach may need to use 
consistent aerosol scattering properties across both 
the CALIOP L2 layer retrieval algorithms and the 
ACOS algorithm. 

3) CALIOP’s sensitivity may not be high 
enough to give useful information for most of the 
clear scenes used in the operational OCO-2 
retrievals. A recent study with CALIOP (Kim 2017) 
suggests total aerosol optical depth up to 
approximately 0.1 could be undetected in the 
ascending (daytime) passes, due to the detector 
noise and increased background from scattered 
solar radiation. The majority of OCO-2 good quality 
soundings are below AOD 0.1. 

These limitations could be addressed more 
directly by a joint retrieval that utilizes a combined 
measurement vector including OCO-2 radiance 
spectra and a co-located CALIOP backscatter 
profile. The joint retrieval would avoid the 
nonlinearity associated with the detection or non-
detection of an aerosol layer, and allow more 
realistic vertical profiles. The aerosol scattering 
properties would be directly shared between each 
forward model. Finally, the lower sensitivity of 
CALIOP could be handled more consistently, as the 
retrieval would be able to fit thin aerosol layers that 
would still be consistent with the sensitivity of the 
backscatter profiles. 
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